GPT编程(1)八分类图像数据集转换为二分类

一个核心问题就是要将这八类数据图片全部重命名,尝试了一步到位

有一个图像数据集,有八个类别'amusement','anger','awe','contentment','disgust',' excitement', 'fear','sadness'的图片,每张图片被命名为“类别+数字”。采用遍历的方式,按顺序阅读每一张图片,将其中‘amusement','anger','awe','contentment’四个类别文件夹的图片重新命名为“positive+n”,这里的n是阅读到的次序,每一张图片都有单独的次序号,并单独放在一个文件夹中;将,'disgust',' excitement', 'fear','sadness'四个类别文件夹的图片重新命名为“negetive+n”,这里的n是阅读到的次序,每一张图片都有单独的次序号,并单独放在文件夹中。用python来实现这个功能,并打印一个进度条来显示进度。

但是读取每一个类别都会重置positive序号,导致出错。所以分为了两步:(1)将八类数据图片放在两个文件夹中,先不改名称;(2)用上面的方法,给所有图片改名称 

1)将八类数据图片放在两个文件夹中,先不改名称;

有一个data文件夹中有八个存放图片的类别文件夹,分别是'amusement','anger','awe','contentment','disgust',' excitement', 'fear','sad',读取这些文件夹中的图片,将'amusement','anger','awe','contentment'这四个文件夹中的图片放进”positive“文件夹中,将'disgust',' excitement', 'fear','sadness'并将文件中的图片这四个文件夹中的图片放进”negetive“文件夹中。用python实现这个功能,并打印一个进度条来显示进度。

import os
from tqdm import tqdm

# 定义输入文件夹和输出文件夹的路径
input_folder = 'your_dataset_folder'
output_folder_positive = 'positive_images'
output_folder_negative = 'negative_images'

# 创建输出文件夹
os.makedirs(output_folder_positive, exist_ok=True)
os.makedirs(output_folder_negative, exist_ok=True)

# 定义类别列表
positive_categories = ['amusement', 'anger', 'awe', 'contentment']
negative_categories = ['disgust', 'excitement', 'fear', 'sadness']

# 遍历每个类别文件夹
for category in positive_categories + negative_categories:
    category_folder = os.path.join(input_folder, category)

    # 确保类别文件夹存在
    if os.path.exists(category_folder):
        # 使用tqdm显示进度条
        for i, filename in enumerate(tqdm(os.listdir(category_folder), desc=f"Processing {category}")):
            file_path = os.path.join(category_folder, filename)

            # 确保是文件而不是文件夹
            if os.path.isfile(file_path):
                # 确定输出路径和新文件名
                if category in positive_categories:
                    output_path = os.path.join(output_folder_positive, f"positive_{i+1}.jpg")
                else:
                    output_path = os.path.join(output_folder_negative, f"negative_{i+1}.jpg")

                # 复制文件到新文件夹并重新命名
                os.rename(file_path, output_path)

print("处理完成。")

(2)用上面的方法,给所有图片改名称 

有一个data文件夹中有八个存放图片的类别文件夹,分别是'amusement','anger','awe','contentment','disgust',' excitement', 'fear','sad',读取这些文件夹中的图片,将'amusement','anger','awe','contentment'这四个文件夹中的图片放进”positive“文件夹中,将'disgust',' excitement', 'fear','sadness'并将文件中的图片这四个文件夹中的图片放进”negetive“文件夹中。用python实现这个功能,并打印一个进度条来显示进度。

import os
from tqdm import tqdm
import shutil

# 定义输入文件夹和输出文件夹的路径
input_folder = 'data'
output_folder_positive = 'positive'
output_folder_negative = 'negative'

# 创建输出文件夹
os.makedirs(output_folder_positive, exist_ok=True)
os.makedirs(output_folder_negative, exist_ok=True)

# 定义类别列表
positive_categories = ['amusement', 'anger', 'awe', 'contentment']
negative_categories = ['disgust', 'excitement', 'fear', 'sad']

# 遍历每个类别文件夹
for category in positive_categories + negative_categories:
    category_folder = os.path.join(input_folder, category)
    
    # 确保类别文件夹存在
    if os.path.exists(category_folder):
        # 使用tqdm显示进度条
        for filename in tqdm(os.listdir(category_folder), desc=f"Processing {category}"):
            file_path = os.path.join(category_folder, filename)
            
            # 确保是文件而不是文件夹
            if os.path.isfile(file_path):
                # 确定输出路径和新文件名
                if category in positive_categories:
                    output_path = os.path.join(output_folder_positive, filename)
                else:
                    output_path = os.path.join(output_folder_negative, filename)
                
                # 复制文件到新文件夹
                shutil.copy(file_path, output_path)

print("处理完成。")

(3)把上述二分类数据集按照80:15:5划分为训练集,测试集,验证集

有一个图像数据集,有两个类别文件夹'positive',‘negative’,按照80:15:5划分为训练集,测试集,验证集,分别放在“train”,"test","val"文件夹中,在每个文件夹中的从“positive”获得的图片放在'positive'文件夹中,从“negative”获得的图片放在'negative'文件夹中,举例文件夹’train‘的下一级是文件夹“positive”和文件夹“negative”。用python来实现这个功能,并打印一个进度条来显示进度。

import os
import random
from shutil import copyfile
from tqdm import tqdm

def split_and_copy_images(input_folder, output_folder, split_ratios=(0.8, 0.15, 0.05), seed=42):
    random.seed(seed)

    # 创建输出文件夹
    for split in ['train', 'test', 'val']:
        split_path = os.path.join(output_folder, split)
        os.makedirs(os.path.join(split_path, 'positive'), exist_ok=True)
        os.makedirs(os.path.join(split_path, 'negative'), exist_ok=True)

    # 遍历每个类别的文件夹
    for category in ['positive', 'negative']:
        category_path = os.path.join(input_folder, category)
        image_files = os.listdir(category_path)
        random.shuffle(image_files)

        # 划分数据集
        total_files = len(image_files)
        train_count = int(total_files * split_ratios[0])
        test_count = int(total_files * split_ratios[1])

        # 复制文件到相应的文件夹
        for i, filename in enumerate(tqdm(image_files, desc=f"Processing {category}")):
            src_path = os.path.join(category_path, filename)

            if i < train_count:
                dst_path = os.path.join(output_folder, 'train', category, f'{category}_{i + 1}.jpg')
            elif i < train_count + test_count:
                dst_path = os.path.join(output_folder, 'test', category, f'{category}_{i + 1}.jpg')
            else:
                dst_path = os.path.join(output_folder, 'val', category, f'{category}_{i + 1}.jpg')

            copyfile(src_path, dst_path)

# 输入文件夹和输出文件夹路径
input_folder = 'path/to/dataset'
output_folder = 'path/to/split_dataset'

# 划分数据集并显示进度条
split_and_copy_images(input_folder, output_folder)
print("数据集划分完成。")

总结,如果思路清晰,有些脚本用ChatGPT来写还是非常方便的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/277572.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

每天坐在电脑前10小时的投资者的现货黄金投资秘密

很多人在现货黄金市场中苦作舟&#xff0c;希望通过交易、实践来找出市场中的奥秘。笔者最近看了一个每天坐在电脑面前十个小时以上做分析和投资的投资者的经验介绍&#xff0c;他道出了一些投资的秘密&#xff0c;笔者认为&#xff0c;这是适合现货黄金投资者借鉴和学习的&…

7.7复原IP地址(LC93-M)

算法&#xff1a; 根据题意 有效的 IP 地址 &#xff1a; &#xff08;1&#xff09;由四个整数构成 &#xff08;2&#xff09;每个整数位于 0 到 255 之间 &#xff08;3&#xff09;每个整数不能含有前导 0&#xff0c;如011、021等&#xff0c;但是可以有单独的一个“…

【笔记】Spring的事务是如何回滚的/Spring的事务管理是如何实现的

Spring的事务是如何回滚的/Spring的事务管理是如何实现的 数据库&#xff08;Spring事务&#xff09; 1、建立连接、开启事务&#xff08;准备工作&#xff09; 2、进行sql操作&#xff08;业务逻辑&#xff09; 3、执行成功&#xff0c;则commit&#xff1b; 执行失败&#x…

MySQL 执行过程

MySQL 的执行流程也确实是一个复杂的过程&#xff0c;它涉及多个组件的协同工作&#xff0c;故而在面试或者工作的过程中很容易陷入迷惑和误区。 MySQL 执行过程 本篇将以 MySQL 常见的 InnoDB 存储引擎为例&#xff0c;为大家详细介绍 SQL 语句的执行流程。从连接器开始&…

直播的营销多样性

直播的营销多样性主要体现在以下几个方面: 1.互动性高:直播能够实时互动&#xff0c;观众可以提问、评论、点赞,甚至直接在直播中购买商品&#xff0c;这种互动性使得直播成为一种非常有效的营销手段。 2.内容生动:直播能够以视频的形式展示产品或服务&#xff0c;相比传统的…

概率论相关题型

文章目录 概率论的基本概念放杯子问题条件概率与重要公式的结合独立的运用 随机变量以及分布离散随机变量的分布函数特点连续随机变量的分布函数在某一点的值为0正态分布标准化随机变量函数的分布 多维随机变量以及分布条件概率max 与 min 函数的相关计算二维随机变量二维随机变…

UWB高精度人员定位系统源码,全方位护航安全生产

定位管理系统使用UWB定位技术&#xff0c;通过在厂区安装定位基站&#xff0c;为人员或设备佩戴定位标签的形式&#xff0c;实现人员精准实时定位。可以实现人员、车辆物资实时定位、工作考勤、电子围栏、历史轨迹回放、巡检巡查、物资盘点、路径规划、三维显示等&#xff0c;以…

JAVA B/S架构智慧工地源码,PC后台管理端、APP移动端

智慧工地系统充分利用计算机技术、互联网、物联网、云计算、大数据等新一代信息技术&#xff0c;以PC端&#xff0c;移动端&#xff0c;设备端三位一体的管控方式为企业现场工程管理提供了先进的技术手段。让劳务、设备、物料、安全、环境、能源、资料、计划、质量、视频监控等…

【小白专用】C# 压缩文件 ICSharpCode.SharpZipLib.dll效果:

插件描述&#xff1a; ICSharpCode.SharpZipLib.dll 是一个完全由c#编写的Zip, GZip、Tar 、 BZip2 类库,可以方便地支持这几种格式的压缩解压缩, SharpZipLib 的许可是经过修改的GPL&#xff0c;底线是允许用在不开源商业软件中&#xff0c;意思就是免费使用。具体可访问ICSha…

【AI】文本转语音 变声 音色克隆 数字人音视频口型同步AI应用

文本转语音 项目地址&#xff1a;https://github.com/coqui-ai/TTS 环境安装&#xff1a; 下载项目&#xff1b;安装Python&#xff0c;安装项目依赖&#xff1a; pip install TTS 1. 下载安装AI模型&#xff1a; https://github.com/facebookresearch/fairseq/tree/main…

大数据框架数仓Doris学习网站,让你轻松掌握数据仓库技能。

介绍&#xff1a;Doris是一款基于大规模并行处理技术的分布式SQL数据库&#xff0c;由百度开源&#xff0c;主要用于实时数据仓库和多维分析。它是一款大数据分析引擎&#xff0c;适用于实时分析场景&#xff0c;支持多种数据接入和输出&#xff0c;提供丰富的核心特性和性能优…

面试算法77:链表排序

题目 输入一个链表的头节点&#xff0c;请将该链表排序。 分析 归并排序的主要思想是将链表分成两个子链表&#xff0c;在对两个子链表排序后再将它们合并成一个排序的链表。 这里可以用快慢双指针的思路将链表分成两半。如果慢指针一次走一步&#xff0c;快指针一次走两步…

【Midjourney】Midjourney根据prompt提示词生成人物图片

目录 &#x1f347;&#x1f347;Midjourney是什么&#xff1f; &#x1f349;&#x1f349;Midjourney怎么用&#xff1f; &#x1f514;&#x1f514;Midjourney提示词格式 Midjourney生成任务示例 例1——航空客舱与乘客 prompt prompt翻译 生成效果 大图展示 细节大…

见证创新实力!安全狗云甲荣获“ISC 数字安全创新能力百强”

12月27日&#xff0c;数字安全技术创新论坛暨ISC 2023数字安全创新能力百强颁奖典礼在北京顺利举办。 作为国内云原生安全领导厂商&#xff0c;安全狗也受邀出席此次活动。 厦门服云信息科技有限公司&#xff08;品牌名&#xff1a;安全狗&#xff09;创办于2013年&#xff0c;…

基于YOLOv8的遥感SAR舰船小目标识别

&#x1f4a1;&#x1f4a1;&#x1f4a1;本文摘要&#xff1a;基于YOLOv8的遥感SAR舰船小目标&#xff0c;阐述了整个数据制作和训练可视化过程 1.YOLOv8介绍 Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的…

【SpringBoot篇】详解Bean的管理(获取bean,bean的作用域,第三方bean)

文章目录 &#x1f354;Bean的获取&#x1f384;注入IOC容器对象⭐代码实现&#x1f6f8;根据bean的名称获取&#x1f6f8;根据bean的类型获取&#x1f6f8;根据bean的名称和类型获取 &#x1f384;Bean的作用域⭐代码实现&#x1f388;注意 &#x1f384;第三方Bean⭐代码实现…

Spring系列学习四、Spring数据访问

Spring数据访问 一、Spring中的JDBC模板介绍1、新建SpringBoot应用2、引入依赖&#xff1a;3、配置数据库连接&#xff0c;注入dbcTemplate对象&#xff0c;执行查询&#xff1a;4&#xff0c;测试验证&#xff1a; 二、整合MyBatis Plus1&#xff0c;在你的项目中添加MyBatis …

企业跨境数据传输的创新技术和应用领域

在当前数字化时代&#xff0c;跨境数据传输成为一个极为关键的领域。随着数据传输需求的不断增加&#xff0c;跨国企业在这一过程中面临着越来越多的问题。为了解决这些挑战&#xff0c;创新技术层出不穷&#xff0c;为跨境数据传输提供了更高效、安全和可靠的解决方案。本文将…

FAST-LIO论文解析

题目&#xff1a;FAST-LIO&#xff1a;一种快速鲁棒的基于紧耦合迭代卡尔曼滤波的雷达-惯导里程计 摘要 本文提出了一种计算效率高、鲁棒性好的激光-惯性里程计框架。我们使用紧耦合的迭代扩展卡尔曼滤波器将LiDAR特征点与IMU数据融合在一起&#xff0c;从而在快速运动、嘈杂…

XHR与Fetch的功能异同点列表

XHR与Fetch的功能异同点列表