C++初阶(十七)模板进阶

在这里插入图片描述


📘北尘_:个人主页

🌎个人专栏:《Linux操作系统》《经典算法试题 》《C++》 《数据结构与算法》

☀️走在路上,不忘来时的初心

文章目录

  • 一、非类型模板参数
  • 二、模板的特化
    • 1、概念
    • 2、函数模板特化
    • 3、类模板特化
      • 1、全特化
      • 2、偏特化
  • 三、模板分离编译
    • 1、 什么是分离编译
    • 2、模板的分离编译
    • 3、解决方法
    • 4、模板总结

在这里插入图片描述


📘北尘_:个人主页

🌎个人专栏:《Linux操作系统》《经典算法试题 》《C++》 《数据结构与算法》

☀️走在路上,不忘来时的初心


一、非类型模板参数

模板参数分为:类型形参与非类型形参。
类型形参即:出现在模板参数列表中,跟在class或者typename之类的参数类型名称。
非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用。

namespace bite
{
	// 定义一个模板类型的静态数组
	template<class T, size_t N = 10>
	class array
	{
	public:
		T& operator[](size_t index) { return _array[index]; }
		const T& operator[](size_t index)const { return _array[index]; }

		size_t size()const { return _size; }
		bool empty()const { return 0 == _size; }

	private:
		T _array[N];
		size_t _size;
	};
}

注意:

  1. 浮点数、类对象以及字符串是不允许作为非类型模板参数的。
  2. 非类型的模板参数必须在编译期就能确认结果。

二、模板的特化

1、概念

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理,比如:实现了一个专门用来进行小于比较的函数模板

// 函数模板 -- 参数匹配
template<class T>
bool Less(T left, T right)
{
 return left < right;
}
int main()
{
 cout << Less(1, 2) << endl; // 可以比较,结果正确
 Date d1(2022, 7, 7);
 Date d2(2022, 7, 8);
 cout << Less(d1, d2) << endl; // 可以比较,结果正确
 Date* p1 = &d1;
 Date* p2 = &d2;
 cout << Less(p1, p2) << endl; // 可以比较,结果错误
 return 0;
}
  1. 可以看到,Less绝对多数情况下都可以正常比较,但是在特殊场景下就得到错误的结果。上述示例中,p1指向的d1显然小于p2指向的d2对象,但是Less内部并没有比较p1和p2指向的对象内容,而比较的是p1和p2指针的地址,这就无法达到预期而错误。
  2. 此时,就需要对模板进行特化。即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。模板特化中分为函数模板特化与类模板特化。

2、函数模板特化

函数模板的特化步骤:

  1. 必须要先有一个基础的函数模板
  2. 关键字template后面接一对空的尖括号<>
  3. 函数名后跟一对尖括号,尖括号中指定需要特化的类型
  4. 函数形参表: 必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误。
// 函数模板 -- 参数匹配
template<class T>
bool Less(T left, T right)
{
 return left < right;
}
// 对Less函数模板进行特化
template<>
bool Less<Date*>(Date* left, Date* right)
{
	return *left < *right;
}
int main()
{
 cout << Less(1, 2) << endl;
 Date d1(2022, 7, 7);
 Date d2(2022, 7, 8);
 cout << Less(d1, d2) << endl;
 Date* p1 = &d1;
 Date* p2 = &d2;
 cout << Less(p1, p2) << endl; // 调用特化之后的版本,而不走模板生成了
 return 0;
 }

注意:一般情况下如果函数模板遇到不能处理或者处理有误的类型,为了实现简单通常都是将该函数直接给出。

bool Less(Date* left, Date* right)
{
 return *left < *right;
}

该种实现简单明了,代码的可读性高,容易书写,因为对于一些参数类型复杂的函数模板,特化时特别给出,因此函数模板不建议特化。

3、类模板特化

1、全特化

全特化即是将模板参数列表中所有的参数都确定化。

template<class T1, class T2>
class Data
{
public:
	Data() { cout << "Data<T1, T2>" << endl; }
private:
	T1 _d1;
	T2 _d2;
};
template<>
class Data<int, char>
{
public:
	Data() { cout << "Data<int, char>" << endl; }
private:
	int _d1;
	char _d2; 
};
void TestVector()
{
	Data<int, int> d1;
	Data<int, char> d2;
}

在这里插入图片描述

2、偏特化

偏特化:任何针对模版参数进一步进行条件限制设计的特化版本。比如对于以下模板类:

template<class T1, class T2>
class Data
{
public:
 Data() {cout<<"Data<T1, T2>" <<endl;}
private:
 T1 _d1;
 T2 _d2;
 }

偏特化有以下两种表现方式:
1、部分特化
将模板参数类表中的一部分参数特化。

// 将第二个参数特化为int
template <class T1>
class Data<T1, int>
{
public:
 Data() {cout<<"Data<T1, int>" <<endl;}
private:
 T1 _d1;
 int _d2;
};

2、参数更进一步的限制
偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版
本。

//两个参数偏特化为指针类型
template <typename T1, typename T2>
class Data <T1*, T2*>
{ 
public:
 Data() {cout<<"Data<T1*, T2*>" <<endl;}
 
private:
 T1 _d1;
 T2 _d2;
};
//两个参数偏特化为引用类型
template <typename T1, typename T2>
class Data <T1&, T2&>
{
public:
 Data(const T1& d1, const T2& d2)
 : _d1(d1)
 , _d2(d2)
 {
 cout<<"Data<T1&, T2&>" <<endl;
 }
 
private:
 const T1 & _d1;
 const T2 & _d2; 
 };
void test2 () 
{
 Data<double , int> d1; // 调用特化的int版本
 Data<int , double> d2; // 调用基础的模板 
 Data<int *, int*> d3; // 调用特化的指针版本
 Data<int&, int&> d4(1, 2); // 调用特化的指针版本
}

三、模板分离编译

1、 什么是分离编译

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。

2、模板的分离编译

假如有以下场景,模板的声明与定义分离开,在头文件中进行声明,源文件中完成定义:

// a.h
template<class T>
T Add(const T& left, const T& right);
// a.cpp
template<class T>
T Add(const T& left, const T& right)
{
 return left + right;
}
// main.cpp
#include"a.h"
int main()
{
 Add(1, 2);
 Add(1.0, 2.0);
 
 return 0;
}

分析:
在这里插入图片描述

3、解决方法

  1. 将声明和定义放到一个文件 “xxx.hpp” 里面或者xxx.h其实也是可以的。推荐使用这种。
  2. 模板定义的位置显式实例化。这种方法不实用,不推荐使用。

【分离编译扩展阅读】 http://blog.csdn.net/pongba/article/details/19130

4、模板总结

【优点】

  1. 模板复用了代码,节省资源,更快的迭代开发,C++的标准模板库(STL)因此而产生
  2. 增强了代码的灵活性

【缺陷】

  1. 模板会导致代码膨胀问题,也会导致编译时间变长
  2. 出现模板编译错误时,错误信息非常凌乱,不易定位错误

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/275074.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【tcp】TCP CLOSE_WAIT问题分析与定位

一、问题背景 某日&#xff0c;运维突然在群里突然丢出告警信息&#xff1a; 对象类型&#xff1a;主机 检测规则&#xff1a;NET.TCP.CLOSE.WAIT 告警内容&#xff1a;CLOSE_WAIT状态的TCP连接数大于500 ....image.png 上面告警信息已经说的很明白&#xff0c;CLOSE_WAIT状…

Ruff物联网数采网关助力工业企业数字化转型,降本增效

如今&#xff0c;随着工厂数字化转型进程的加速&#xff0c;越来越多的企业对于设备数据感知层及传输层的应用越来越重视&#xff0c;因此工业数采网关也走进了很多人的视野&#xff0c;在工厂数字化转型中扮演着关键角色。 物联网数据采集网关能将各种传感器、执行器等设备连…

主浏览器优化之路1——你现在在用的是什么浏览器?Edge?谷歌?火狐?360!?

上一世&#xff0c;我的浏览器之路 引言为什么要用两个浏览器为什么一定要放弃火狐结尾给大家一个猜数字小游戏&#xff08;测运气&#xff09; 引言 小时候&#xff0c;我一开始上网的浏览器是2345王牌浏览器吧&#xff0c; 因为上面集成了很多网站&#xff0c;我记得上面有7…

五轴机床测头:高精度曲面检测的得力工具

五轴机床测头广泛应用于制造业中的高精度加工领域。它能够准确、快速地检测出曲面的形状、尺寸和特征&#xff0c;为生产过程中的质量控制提供了重要支持。 五轴机床测头是一款具有3维5向探测功能的红外触发机床测头&#xff0c;广泛应用于 3 轴、5 轴加工中心&#xff0c;以及…

【Bootstrap学习 day1】

Bootstrap5 网格的基本结构 等宽响应式列 Bootstrap 5 网格系统有6个类&#xff1a; .col-针对所有设备 col-sm平板-屏幕宽度等于或大于576px。 .col-md-桌面显示器&#xff0c;屏幕宽度等于或大于768px col-lg大桌面显示器&#xff0c;屏幕宽度等于或大于992px col-xl特大桌面…

百度CTO王海峰:文心一言用户规模破1亿

▶ 写在前面▶ 飞桨开发者已达1070万▶ 文心一言用户规模破亿&#xff0c;日提问量快速增长 ▶ 写在前面 “文心一言用户规模突破 1 亿。”12 月 28日&#xff0c;百度首席技术官、深度学习技术及应用国家工程研究中心主任王海峰在第十届 WAVE SUMMIT 深度学习开发者大会上宣布…

事务的简介

一、什么是事务 事务是一组数据库的操作序列&#xff0c;包含一个或多个sql操作命令&#xff08;增删改&#xff09;&#xff0c;事务将所有的操作命令看做一个不可分割的整体&#xff0c;向数据库系统提交或撤销操作&#xff0c;所有操作要么执行要么不执行。 ●事务是一种机…

大创项目推荐 深度学习YOLO安检管制物品识别与检测 - python opencv

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络4 Yolov55 模型训练6 实现效果7 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习YOLO安检管制误判识别与检测 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&…

计算机毕业设计-----ssm流浪猫狗救助管理系统

项目介绍 流浪猫狗救助管理系统。该项目分为前后台&#xff1b; 前台主要功能包括&#xff1a;会员的注册登陆,流浪猫狗知识&#xff0c;领养中心&#xff0c;团队活动&#xff0c;流浪宠物详情&#xff0c;申请领养等&#xff1b; 后台主要功能包括&#xff1a;管理员的用户…

【SpringCloud笔记】(9)分布式配置中心之Config

Config 概述 分布式系统当前面临的配置问题 微服务意味着要将单体应用中的业务拆分成一个个子服务&#xff0c;每个服务的粒度相对较小&#xff0c;因此系统中会出现大量的服务。 比如&#xff1a;有n个微服务连接同一套数据库&#xff0c;当连接数据库需要发生变动时&…

webrtc turn服务器搭建

测试环境ubuntu 22LTS 首先从github上下载源码编译 GitHub - coturn/coturn: coturn TURN server project 用的tag docker/4.6.2-r7 ./configure --prefix /usr/local/coturn make 安装coturn的时候还需要安装一些依赖包 apt-get install pkg-config apt-get install op…

室内设计师效果图云渲染好?还是本地渲染好?

室内设计师在设计项目中经常面临一个关键的技术选择&#xff1a;使用云渲染服务或本地渲染完成效果图渲染呢&#xff1f;每种方式都有其独的优势与不足&#xff0c;且影响整个设计的完成速度、质量和成本。当然还有部分人群不知道云渲染是什么&#xff1f;本文整理关于云渲染的…

为什么都建议配备人员摔倒AI检测算法

旭帆科技的AI智能分析网关v4包含有30多种算法&#xff0c;包括人体、车辆、行为分析、烟火、入侵、安全帽、反光衣等等&#xff0c;可应用在安全生产、通用园区、智慧社区、智慧工地等场景中。 今天&#xff0c;小编就其中的摔倒检测算法来展开聊聊&#xff0c;可以用于哪些场…

达梦dm.ini参数之SELECT_LOCK_MODE详解

一、背景 1.现象概述 某项目当晚分区表变更&#xff0c;因为manager工具多开了1个窗口执行了语句慢取消了&#xff0c;新开了一个会话窗口执行添加分区/删除分区/truncate分区卡死了&#xff0c;v$session查不到关于这张分区表的阻塞和事务&#xff0c;但是在v$lock里根据表的…

C语言-第十七周课堂总结-数组

找出矩阵中最大值所在的位置 程序解析-求矩阵的最大值 源程序段 二维数组 多维数组的空间想象 一维数组&#xff1a;一列长表或一个向量二维数组&#xff1a;一个表格或一个平面矩阵三维数组&#xff1a;三位空间的一个方阵多维数组&#xff1a;多维空间的一个数据矩阵 …

如何在本地部署现有气象大模型

今年涌现了诸如Pangu、Fuxi、Fengwu、GraphCast、FourCastNet等诸多气象大模型&#xff0c;本文介绍如何用EC开发的ai-models在本地部署以上模型。 本文测试环境系统为&#xff1a; Ubuntu 18.04.6 LTS Anaconda 3 Cuda 11.8 libcudnn 8 1、创建并启动虚拟环境 conda cr…

修改orbslam2代码,加载二进制词典文件,加速词典加载速度

修改orbslam2代码&#xff0c;加载二进制词典文件&#xff0c;加速词典加载速度 0.在ORB_SLAM2下创建tools文件夹&#xff0c;放入bin_vocabulary.cc程序 #include <time.h>#include "ORBVocabulary.h" using namespace std;bool load_as_text(ORB_SLAM2::OR…

手动创建idea SpringBoot 项目

步骤一&#xff1a; 步骤二&#xff1a; 选择Spring initializer -> Project SDK 选择自己的JDK版本 ->Next 步骤三&#xff1a; Maven POM ->Next 步骤四&#xff1a; 根据JDK版本选择Spring Boot版本 11版本及以上JDK建议选用3.2版本&#xff0c;JDK为11版本…

算法模板之单调栈和单调队列图文详解

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;算法模板、数据结构 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. ⛳️单调栈讲解1.1 &#x1f514;单调栈的定义1.2 &#x1f514;如何维护一个单…

JS + CSS 实现高亮关键词(不侵入DOM)

之前在做关键词检索高亮功能的时候&#xff0c;研究了下目前前端实现高亮的几种方式&#xff0c;第一就是替换dom元素实现高亮&#xff0c;第二就是利用浏览器新特性Css.highlights结合js选区与光标与CSS高亮伪类实现&#xff0c;实现功能如下&#xff1a; 一、页面布局 一个…