一台服务器​最大并发 tcp 连接数多少?65535?

首先,问题中描述的65535个连接指的是客户端连接数的限制。

在tcp应用中,server事先在某个固定端口监听,client主动发起连接,经过三次握手后建立tcp连接。那么对单机,其最大并发tcp连接数是多少呢?

如何标识一个TCP连接

在确定最大连接数之前,先来看看系统如何标识一个tcp连接。系统用一个4四元组来唯一标识一个TCP连接:{localip, localport,remoteip,remoteport} = {本地ip,本地port,远程ip,远程port}

client最大tcp连接数

client每次发起tcp连接请求时,除非绑定端口,通常会让系统选取一个空闲的本地端口(local port),该端口是独占的,不能和其他tcp连接共享。tcp端口的数据类型是unsigned short,因此本地端口个数最大只有65536,端口0有特殊含义,不能使用,这样可用端口最多只有65535,所以在全部作为client端的情况下,一个client最大tcp连接数为65535,这些连接可以连到不同的serverip。

server最大tcp连接数

server通常固定在某个本地端口上监听,等待client的连接请求。不考虑地址重用(unix的SO_REUSEADDR选项)的情况下,即使server端有多个ip,本地监听端口也是独占的,因此server端tcp连接4元组中只有remoteip(也就是clientip)和remote port(客户端port)是可变的,因此最大tcp连接为客户端ip数×客户端port数,对IPV4,不考虑ip地址分类等因素,最大tcp连接数约为2的32次方(ip数)×2的16次方(port数),也就是server端单机最大tcp连接数约为2的48次方。

实际的tcp连接数

上面给出的是理论上的单机最大连接数,在实际环境中,受到机器资源、操作系统等的限制,特别是sever端,其最大并发tcp连接数远不能达到理论上限。在unix/linux下限制连接数的主要因素是内存和允许的文件描述符个数(每个tcp连接都要占用一定内存,每个socket就是一个文件描述符),另外1024以下的端口通常为保留端口。

所以,对server端,通过增加内存、修改最大文件描述符个数等参数,单机最大并发TCP连接数超过10万,甚至上百万是没问题的。

这明显是进入了思维的误区,65535是指可用的端口总数,并不代表服务器同时只能接受65535个并发连接。

举个例子:

我们做了一个网站,绑定的是TCP的80端口,结果是所有访问这个网站的用户都是通过服务器的80端口访问,而不是其他端口。可见端口是可以复用的。

即使Linux服务器只在80端口侦听服务, 也允许有10万、100万个用户连接服务器。Linux系统不会限制连接数至于服务器能不能承受住这么多的连接,取决于服务器的硬件配置、软件架构及优化。

01
我们知道两个进程如果需要进行通讯最基本的一个前提是:能够唯一的标示一个进程。在本地进程通讯中我们可以使用PID来唯一标示一个进程,但PID只在本地唯一,网络中的两个进程PID冲突几率很大。

这时候就需要另辟它径了,IP地址可以唯一标示主机,而TCP层协议和端口号可以唯一标示主机的一个进程,这样可以利用IP地址+协议+端口号唯一标示网络中的一个进程。

能够唯一标示网络中的进程后,它们就可以利用socket进行通信了。socket(套接字)是在应用层和传输层之间的一个抽象层,它把TCP/IP层复杂的操作抽象为几个简单的接口供应用层调用以实现进程在网络中通信。

socket源自Unix,是一种"打开—读/写—关闭"模式的实现,服务器和客户端各自维护一个"文件",在建立连接打开后,可以向自己文件写入内容供对方读取或者读取对方内容,通讯结束时关闭文件。

02
唯一能够确定一个连接有4个东西:

  • 服务器的IP
  • 服务器的Port
  • 客户端的IP
  • 客户端的Port

服务器的IP和Port可以保持不变,只要客户端的IP和Port彼此不同就可以确定一个连接数。

一个socket是可以建立多个连接的,一个TCP连接的标记为一个四元组(source_ip, source_port, destination_ip, destination_port),即(源IP,源端口,目的IP,目的端口)四个元素的组合。只要四个元素的组合中有一个元素不一样,那就可以区别不同的连接。

举个例子:

你的主机IP地址是1.1.1.1, 在8080端口监听
当一个来自 2.2.2.2 发来一条连接请求,端口为5555。这条连接的四元组为(1.1.1.1, 8080, 2.2.2.2, 5555)
这时2.2.2.2又发来第二条连接请求,端口为6666。新连接的四元组为(1.1.1.1, 8080, 2.2.2.2, 6666)

那么,你主机的8080端口建立了两条连接;

(2.2.2.2)发来的第三条连接请求,端口为5555(或6666)。第三条连接的请求就无法建立,因为没有办法区分于上面两条连接。

同理,可以在同一个端口号和IP地址上绑定一个TCP socket和一个UDP socket
因为端口号虽然一样,但由于协议不一样,所以端口是完全独立的。
TCP/UDP一般采用五元组来定位一个连接:
source_ip, source_port, destination_ip, destination_port, protocol_type
即(源IP,源端口,目的IP,目的端口,协议号)

综上所述,服务器的并发数并不是由TCP的65535个端口决定的。服务器同时能够承受的并发数是由带宽、硬件、程序设计等多方面因素决定的。

所以也就能理解淘宝、腾讯、头条、百度、新浪、哔哔哔哔等为什么能够承受住每秒种几亿次的并发访问,是因为他们采用的是服务器集群。服务器集群分布在全国各地的大型机房,当访问量小的时候会关闭一些服务器,当访问量大的时候回不断的开启新的服务器。

65535从哪来的,干啥的?

要解释好这个问题,就要先说清楚65535的含义。在Linux系统中,如果两个机器要通信,那么相互之间需要建立TCP连接,为了让双方互相认识,Linux系统用一个四元组来唯一标识一个TCP连接:{local ip, local port, remote ip, remote port},即本机IP、本机端口、远程IP、远程端口,IP和端口就相当于小区地址和门牌号,只有拿到这些信息,通信的双方才能互相认知。在Linux系统中,表示端口号(port)的变量占16位,这就决定了端口号最多有2的16次方个,即65536个,另外端口0有特殊含义不给使用,这样每个服务器最多就有65535个端口可用。因此,65535代表Linux系统支持的TCP端口号数量,在TCP建立连接时会使用。

TCP怎么建立连接,与端口号是什么关系?

Linux服务器在交互时,一般有两种身份:客户端或者服务器端。典型的交互场景是:
(1)服务器端主动创建监听的socket,并绑定对外服务端口port,然后开始监听
(2)客户端想跟服务器端通信时,就开始连接服务器的端口port
(3)服务端接受客户端的请求,然后再生成新的socket
(4)服务器和客户端在新的socket里进行通信

可以看到,端口port主要用在服务器和客户端的“握手认识”过程,一旦互相认识了,就会生成新的socket进行通信,这时候port就不再需要了,可以给别的socket通信去使用,所以很明显TCP连接的数量可以大于TCP端口号的数量65,535。

考虑一下两个极端场景,即某台Linux服务器只作为客户端或者服务器端
(1)Linux服务器只作为客户端

这时候每发起一个TCP请求,系统就会指定一个空闲的本地端口给你用,而且是独占式的,不会被别的TCP连接抢走,这样最多可以建立65535个连接,每个连接都与不同的服务器进行交互。这种场景,就是题主所描述的样子,但是由于条件过于苛刻,属于小概率事件,所以更多的还是理论上的可能,现实的环境中几乎不会出现。

(2)Linux服务器只作为服务端

这种场景下,服务端就会固定的监听本地端口port,等着客户端来向它发起请求。为了计算简单,我们假设服务器端的IP跟端口是多对一的,这样TCP四元组里面就有remote ip和remote port是可变的,因此最大支持创建TCP个数为2的32次方(IP地址是32位的)乘以2的16次方(port是16位的)等于2的48次方。

现实中单台Linux服务器支持的TCP连接数量

通过前面的分析我们知道,在现实场景中,由于存在端口port复用的情况,服务器可同时支持的TCP连接数跟65535没有一一对应关系,事实上,真正影响TCP连接数量的,是服务器的内存以及允许单一进程同时打开文件的数量,因为每创建一个TCP连接都要创建一个socket句柄,每个socket句柄都占用一部分系统内存,当系统内存被占用殆尽,允许的TCP并发连接数也就到了上限。一般来讲,通过增加服务器内存、修改最大文件描述符个数等,可以做到单台服务器支持10万+的TCP并发。

当然,在真实的商用场景下,单台服务器都会编入分布式集群,通过负载均衡算法动态的调度不同用户的请求给最空闲的服务器,如果服务器平均内存使用超过80%的警戒线,那么就会及时采用限流或者扩展集群的方式来保证服务,绝对不会出现服务器的内存被耗尽的情况,那样就算事故了。

总之,65535只是Linux系统中可使用端口port数量的上限,端口port数量与TCP连接数量并非完全一一对应的关系,服务器支持的TCP并发连接数量主要跟服务器的内存以及允许单个进程同时打开的文件数量有关系,通过端口复用及调整服务器参数等手段,单台服务器支持的TCP并发连接数是可以高于65535的。

来源:blog.csdn.net/daocaokafei/article/details/115410761

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/272276.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HttpClient基础

简介&#xff1a; HttpClient是Apache的一个子项目&#xff0c;可以提供高效的、功能丰富的支持HTTP协议的客户端编程工具包&#xff0c;并且它支持HTTP协议最新的版本和建议。 作用&#xff1a; 发送HTTP请求接收响应数据 使用 导入maven坐标&#xff1a; <dependency&g…

VSLAM:对极几何

文章目录 概要对极约束推导参考概要 透视几何的缺陷是图像深度信息的丢失,如图1所示,根据相似变换关系,视线上的若干平面都映射为成像面上的一个平面。 图1 对极几何是两个透视几何模型间的几何约束关系,主要用于实现基于三角测量的双目立体视觉、深度估计等,对极几何约…

【代码学习】多标签分类 multilabel classfication | loss如何计算? | 衡量指标如何计算?

文章目录 loss计算 | BCELoss(), 最后sigmoid映射为0-1区间值衡量指标计算 sklearn.metrics代码 MultiLabelClassifier /CelebA_Classification_PyTorch_Github.ipynb loss计算 | BCELoss(), 最后sigmoid映射为0-1区间值 gpt解释 import torch import torch.nn as nn# 创建模…

全卷积网络

全卷积网络 全卷积网络就是图像到图像的变换&#xff0c;一般用于语义分割&#xff0c;图像恢复啥的 我们使用Resnet18来进行&#xff0c;最后平均池化和全连接层我们不需要 import torch import torchvision from torch import nn from torch.nn import functional as F fr…

sheng的学习笔记-【中】【吴恩达课后测验】Course 4 -卷积神经网络 - 第四周测验

课程4_第4周_测验题 目录 第一题 1.面部验证只需要将新图片与1个人的面部进行比较&#xff0c;而面部识别则需要将新图片与K个人的面部进行比较。 A. 【  】正确 B. 【  】错误 答案&#xff1a; A.【 √ 】正确 第二题 2.在人脸验证中函数d(img1,img2)起什么作用&a…

12.26_黑马数据结构与算法笔记Java

目录 243 图 Floyd Warshall 算法实现2 244 图 Floyd Warshall 算法实现3 245 图 Floyd Warshall 算法实现4 246 图 最小生成树 Prim 247 图 最小生成树 Kruskal 248 图 并查集 1 249 图 并查集 2 250 图 并查集 路径压缩 251 图 并查集 UnionBySize 252 贪心算法 介绍…

Python干饭神器告诉你,今天吃什么,再也不用为吃什么发愁!

亲爱的小伙伴们&#xff0c;由于微信公众号改版&#xff0c;打乱了发布时间&#xff0c;为了保证大家可以及时收到文章的推送&#xff0c;可以点击上方蓝字关注测试工程师成长之路&#xff0c;并设为星标就可以第一时间收到推送哦 一.前言 hello&#xff0c;大家好&#xff0c…

计算器——可支持小数的任意四则运算(中缀表达式转为后缀表达式算法)

中缀表达式转为后缀表达式的原理过程主要包括以下步骤&#xff1a; 1. 初始化两个栈&#xff0c;一个用于存储操作数&#xff0c;一个用于存储运算符。2. 从左到右扫描中缀表达式的每个字符。3. 如果遇到数字&#xff0c;则直接将其压入操作数栈。4. 如果遇到运算符&#xff0c…

[vue]Echart使用手册

[vue]Echart使用手册 使用环境Echart的使用Echart所有组件和图表类型Echart 使用方法 使用环境 之前是在JQuery阶段使用Echart&#xff0c;直接引入Echart的js文件即可&#xff0c;现在是在vue中使用,不仅仅时echarts包&#xff0c;还需要安装vue-echarts&#xff1a; "…

性能暴增的Rope Crystal版本:红宝石(12.25)

文章目录 &#xff08;零&#xff09;版本介绍&#xff08;一&#xff09;主界面调整&#xff08;二&#xff09;模型与性能&#xff08;三&#xff09;创作纪念日 &#xff08;零&#xff09;版本介绍 &#x1f517; Github仓库。 这次圣诞节更新主要是提升性能&#xff01;&…

JavaScript:DOM节点

JavaScript&#xff1a;DOM节点 DOM节点查找节点父节点查找子节点查找兄弟节点查找 插入节点追加节点克隆节点 删除节点浏览器渲染模式回流重绘 DOM节点 DOM树中的每一个内容都称之为节点&#xff0c;主要包括元素节点&#xff0c;属性节点&#xff0c;文本节点等&#xff0c;本…

EasyCVR无人机推流+人数统计AI算法,助力公共场所人群密度管控

一、背景与需求 在公共场所和大型活动的管理中&#xff0c;人数统计和人群密度控制是非常重要的安全问题。传统的方法可能存在效率低下或准确度不足的情况&#xff0c;无法满足现代社会的需求。TSINGSEE青犀可以利用无人机推流AI人流量统计算法&#xff0c;基于计算机视觉技术…

22000mAh 电池,这款国产新机来了场「续航」震撼

见惯了主流智能手机&#xff0c;是时候上一波离谱新机震撼了。 三防手机这一细分类型&#xff0c;咱们普通用户可能接触得比较少&#xff1b; 但对于极限运动、野外探险爱好者来说&#xff0c;这玩意儿可是关键时候能救命的必备神器。 在真正严苛环境面前&#xff0c;性能啥的…

ES慢查询分析——性能提升6 倍

问题 生产环境频繁报警。查询跨度91天的数据&#xff0c;请求耗时已经来到了30s。报警的阈值为5s。 背景 查询关键词简单&#xff0c;为‘北京’ 单次仅检索两个字段 查询时间跨度为91天&#xff0c;覆盖数据为450亿数据 问题分析 使用profle分析&#xff0c;复现监控报警的…

【DevOps 工具链】搭建 项目管理软件 禅道

文章目录 1、简介2、环境要求3、搭建部署环境3.1. 安装Apache服务3.2. 安装PHP环境&#xff08;以php7.0为例 &#xff09;3.3. 安装MySQL服务 4、搭建禅道4.1、下载解压4.2、 配置4.2.1、 启动4.2.2、自启动4.2.3、确认是否开机启动 5、成功安装 1、简介 禅道是国产开源项目管…

nvprof:CUDA编程性能分析工具

nvprof分析工具使您能够从命令行收集和查看分析数据。nvprof能够收集CPU和GPU上与CUDA相关的活动的时间线&#xff0c;包括内核执行、内存传输、内存集和CUDA API调用以及CUDA内核的事件或度量。评测选项通过命令行选项提供给nvprof。分析结果在收集分析数据后显示在控制台中&a…

PS 修改图片为固定大小和固定内存

1. 改为固定大小 点击图像->图像大小 然后就可以根据你的需求进行更改了 2. 改为固定内存 点击文件->存储或者存储为web 然后就是如下界面&#xff1a; 点击确定之后&#xff0c;就会有如下界面&#xff0c;其中右边有图片内存的最大大小&#xff0c;三角形处可以来回…

详解Junit单元测试@Test及Assert断言(一学就会,通俗易懂版)

定义 快速入门&#xff08;扩展&#xff1a;Assert断言&#xff09; 断言机制 运行该类的所有测试类 Junit常用注解 示例 1. 2. 3. 4.实例方法初始化和释放资源 5.静态方法初始化和释放资源 一样的使用

[SWPUCTF 2021 新生赛]hardrce

[SWPUCTF 2021 新生赛]hardrce wp 参考博客&#xff1a;https://www.cnblogs.com/bkofyZ/p/17644820.html 代码审计 题目的代码如下&#xff1a; <?php header("Content-Type:text/html;charsetutf-8"); error_reporting(0); highlight_file(__FILE__); if(is…

2023年民宿管理系统排名前十的是哪些?哪一个的功能强大?

现在说起去旅游&#xff0c;很多都会选择订民宿&#xff0c;因为民宿装修风格更具个性化和本土气息&#xff0c;适合追求新潮的年轻人&#xff0c;拍照打卡效果很好。另外就是民宿布局和家里比较相似&#xff0c;出游人数比较多的话住着更方便。由于这股风潮的兴起&#xff0c;…