自学SLAM(9)《第五讲:特征点法视觉里程计》作业

文章目录

  • 1.ORB特征点
    • 1.1 ORB提取
    • 1.2 ORB描述
    • 1.3 暴力匹配
    • 1.4 最后,请结合实验,回答下⾯⼏个问题
  • 2.从 E 恢复 R,t
  • 3.用 G-N 实现 Bundle Adjustment
  • 4.* 用 ICP 实现轨迹对齐


在这里插入图片描述

1.ORB特征点

1.1 ORB提取

ORB(Oriented FAST and BRIEF) 特征是 SLAM 中⼀种很常⽤的特征,由于其⼆进制特性,使得它可以⾮常快速地提取与计算 [1]。下⾯,你将按照本题的指导,⾃⾏书写 ORB 的提取、描述⼦的计算以及匹配的代码。代码框架参照computeORB.cpp ⽂件,图像见 1.png ⽂件和 2.png。
在这里插入图片描述

1.2 ORB描述

在这里插入图片描述

1.3 暴力匹配

在这里插入图片描述
提⽰:

  1. 你需要按位计算两个描述⼦之间的汉明距离。
  2. OpenCV 的 DMatch 结构, queryIdx 为第⼀图的特征 ID, trainIdx 为第⼆个图的特征 ID。
  3. 作为验证,匹配之后输出图像应如图 2 所⽰。

1.4 最后,请结合实验,回答下⾯⼏个问题

最后,请结合实验,回答下⾯⼏个问题:

  1. 为什么说 ORB 是⼀种⼆进制特征?
  2. 为什么在匹配时使⽤ 50 作为阈值,取更⼤或更⼩值会怎么样?
  3. 暴⼒匹配在你的机器上表现如何?你能想到什么减少计算量的匹配⽅法吗?

我直接把1.1,1.2,1.3的代码和结果放到一起
computeORB.cpp:

#include <opencv2/opencv.hpp>

#include <string>

using namespace std;

// global variables
string first_file = "../1.png";
string second_file = "../2.png";

const double pi = 3.1415926;    // pi


// TODO implement this function
/**
 * compute the angle for ORB descriptor
 * @param [in] image input image
 * @param [in|out] detected keypoints
 */
void computeAngle(const cv::Mat &image, vector<cv::KeyPoint> &keypoints);

// TODO implement this function
/**
 * compute ORB descriptor
 * @param [in] image the input image
 * @param [in] keypoints detected keypoints
 * @param [out] desc descriptor
 */
typedef vector<bool> DescType;  // type of descriptor, 256 bools
void computeORBDesc(const cv::Mat &image, vector<cv::KeyPoint> &keypoints, vector<DescType> &desc);

// TODO implement this function
/**
 * brute-force match two sets of descriptors
 * @param desc1 the first descriptor
 * @param desc2 the second descriptor
 * @param matches matches of two images
 */
void bfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches);

int main(int argc, char **argv) {

    // load image
    cv::Mat first_image = cv::imread(first_file, 0);    // load grayscale image
    cv::Mat second_image = cv::imread(second_file, 0);  // load grayscale image

    // plot the image
    cv::imshow("first image", first_image);
    cv::imshow("second image", second_image);
    cv::waitKey(0);

    // detect FAST keypoints using threshold=40
    vector<cv::KeyPoint> keypoints;
    cv::FAST(first_image, keypoints, 40);
    cout << "keypoints: " << keypoints.size() << endl;

    // compute angle for each keypoint
    computeAngle(first_image, keypoints);

    // compute ORB descriptors
    vector<DescType> descriptors;
    computeORBDesc(first_image, keypoints, descriptors);

    // plot the keypoints
    cv::Mat image_show;
    cv::drawKeypoints(first_image, keypoints, image_show, cv::Scalar::all(-1),
                      cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    cv::imshow("features", image_show);
    cv::imwrite("feat1.png", image_show);
    cv::waitKey(0);

    // we can also match descriptors between images
    // same for the second
    vector<cv::KeyPoint> keypoints2;
    cv::FAST(second_image, keypoints2, 40);
    cout << "keypoints: " << keypoints2.size() << endl;

    // compute angle for each keypoint
    computeAngle(second_image, keypoints2);

    // compute ORB descriptors
    vector<DescType> descriptors2;
    computeORBDesc(second_image, keypoints2, descriptors2);

    // find matches
    vector<cv::DMatch> matches;
    bfMatch(descriptors, descriptors2, matches);
    cout << "matches: " << matches.size() << endl;

    // plot the matches
    cv::drawMatches(first_image, keypoints, second_image, keypoints2, matches, image_show);
    cv::imshow("matches", image_show);
    cv::imwrite("matches.png", image_show);
    cv::waitKey(0);

    cout << "done." << endl;
    return 0;
}

// -------------------------------------------------------------------------------------------------- //

// compute the angle
void computeAngle(const cv::Mat &image, vector<cv::KeyPoint> &keypoints) {
    int half_patch_size = 8;
    for (auto &kp : keypoints) {
	// START YOUR CODE HERE (~7 lines)
         //judge if keypoint is on edge
        int x=cvRound(kp.pt.x);
        int y=cvRound(kp.pt.y);
        if( x-half_patch_size<0||x+half_patch_size>image.cols||
            y-half_patch_size<0||y+half_patch_size>image.rows)
            continue;  //结束当前循环,进入到下一次循环
        double m01=0,m10=0;   //定义变量的时候,要初始化,不然这里第一张图片所有kp.angle=0
        for(int i=-half_patch_size;i<half_patch_size;i++){    //-8<i<8,-8<j<8
            for(int j=-half_patch_size;j<half_patch_size;j++){
                m01 += j*image.at<uchar>(y+j,x+i);              //真实坐标(j,i)+(y,x)
                m10 += i*image.at<uchar>(y+j,x+i);              //获得单个像素值image.at<uchar>(y,x)
            }
        }
        kp.angle = atan(m01/m10)*180/pi;
        cout<<"m10 = "<<m01<<"   "<<"m01 = "<<m10<<"  "<<"kp.angle = "<<kp.angle<<endl;
        // END YOUR CODE HERE
    }
    return;
}

// -------------------------------------------------------------------------------------------------- //
// ORB pattern
int ORB_pattern[256 * 4] = {
        8, -3, 9, 5/*mean (0), correlation (0)*/,
        4, 2, 7, -12/*mean (1.12461e-05), correlation (0.0437584)*/,
        -11, 9, -8, 2/*mean (3.37382e-05), correlation (0.0617409)*/,
        7, -12, 12, -13/*mean (5.62303e-05), correlation (0.0636977)*/,
        2, -13, 2, 12/*mean (0.000134953), correlation (0.085099)*/,
        1, -7, 1, 6/*mean (0.000528565), correlation (0.0857175)*/,
        -2, -10, -2, -4/*mean (0.0188821), correlation (0.0985774)*/,
        -13, -13, -11, -8/*mean (0.0363135), correlation (0.0899616)*/,
        -13, -3, -12, -9/*mean (0.121806), correlation (0.099849)*/,
        10, 4, 11, 9/*mean (0.122065), correlation (0.093285)*/,
        -13, -8, -8, -9/*mean (0.162787), correlation (0.0942748)*/,
        -11, 7, -9, 12/*mean (0.21561), correlation (0.0974438)*/,
        7, 7, 12, 6/*mean (0.160583), correlation (0.130064)*/,
        -4, -5, -3, 0/*mean (0.228171), correlation (0.132998)*/,
        -13, 2, -12, -3/*mean (0.00997526), correlation (0.145926)*/,
        -9, 0, -7, 5/*mean (0.198234), correlation (0.143636)*/,
        12, -6, 12, -1/*mean (0.0676226), correlation (0.16689)*/,
        -3, 6, -2, 12/*mean (0.166847), correlation (0.171682)*/,
        -6, -13, -4, -8/*mean (0.101215), correlation (0.179716)*/,
        11, -13, 12, -8/*mean (0.200641), correlation (0.192279)*/,
        4, 7, 5, 1/*mean (0.205106), correlation (0.186848)*/,
        5, -3, 10, -3/*mean (0.234908), correlation (0.192319)*/,
        3, -7, 6, 12/*mean (0.0709964), correlation (0.210872)*/,
        -8, -7, -6, -2/*mean (0.0939834), correlation (0.212589)*/,
        -2, 11, -1, -10/*mean (0.127778), correlation (0.20866)*/,
        -13, 12, -8, 10/*mean (0.14783), correlation (0.206356)*/,
        -7, 3, -5, -3/*mean (0.182141), correlation (0.198942)*/,
        -4, 2, -3, 7/*mean (0.188237), correlation (0.21384)*/,
        -10, -12, -6, 11/*mean (0.14865), correlation (0.23571)*/,
        5, -12, 6, -7/*mean (0.222312), correlation (0.23324)*/,
        5, -6, 7, -1/*mean (0.229082), correlation (0.23389)*/,
        1, 0, 4, -5/*mean (0.241577), correlation (0.215286)*/,
        9, 11, 11, -13/*mean (0.00338507), correlation (0.251373)*/,
        4, 7, 4, 12/*mean (0.131005), correlation (0.257622)*/,
        2, -1, 4, 4/*mean (0.152755), correlation (0.255205)*/,
        -4, -12, -2, 7/*mean (0.182771), correlation (0.244867)*/,
        -8, -5, -7, -10/*mean (0.186898), correlation (0.23901)*/,
        4, 11, 9, 12/*mean (0.226226), correlation (0.258255)*/,
        0, -8, 1, -13/*mean (0.0897886), correlation (0.274827)*/,
        -13, -2, -8, 2/*mean (0.148774), correlation (0.28065)*/,
        -3, -2, -2, 3/*mean (0.153048), correlation (0.283063)*/,
        -6, 9, -4, -9/*mean (0.169523), correlation (0.278248)*/,
        8, 12, 10, 7/*mean (0.225337), correlation (0.282851)*/,
        0, 9, 1, 3/*mean (0.226687), correlation (0.278734)*/,
        7, -5, 11, -10/*mean (0.00693882), correlation (0.305161)*/,
        -13, -6, -11, 0/*mean (0.0227283), correlation (0.300181)*/,
        10, 7, 12, 1/*mean (0.125517), correlation (0.31089)*/,
        -6, -3, -6, 12/*mean (0.131748), correlation (0.312779)*/,
        10, -9, 12, -4/*mean (0.144827), correlation (0.292797)*/,
        -13, 8, -8, -12/*mean (0.149202), correlation (0.308918)*/,
        -13, 0, -8, -4/*mean (0.160909), correlation (0.310013)*/,
        3, 3, 7, 8/*mean (0.177755), correlation (0.309394)*/,
        5, 7, 10, -7/*mean (0.212337), correlation (0.310315)*/,
        -1, 7, 1, -12/*mean (0.214429), correlation (0.311933)*/,
        3, -10, 5, 6/*mean (0.235807), correlation (0.313104)*/,
        2, -4, 3, -10/*mean (0.00494827), correlation (0.344948)*/,
        -13, 0, -13, 5/*mean (0.0549145), correlation (0.344675)*/,
        -13, -7, -12, 12/*mean (0.103385), correlation (0.342715)*/,
        -13, 3, -11, 8/*mean (0.134222), correlation (0.322922)*/,
        -7, 12, -4, 7/*mean (0.153284), correlation (0.337061)*/,
        6, -10, 12, 8/*mean (0.154881), correlation (0.329257)*/,
        -9, -1, -7, -6/*mean (0.200967), correlation (0.33312)*/,
        -2, -5, 0, 12/*mean (0.201518), correlation (0.340635)*/,
        -12, 5, -7, 5/*mean (0.207805), correlation (0.335631)*/,
        3, -10, 8, -13/*mean (0.224438), correlation (0.34504)*/,
        -7, -7, -4, 5/*mean (0.239361), correlation (0.338053)*/,
        -3, -2, -1, -7/*mean (0.240744), correlation (0.344322)*/,
        2, 9, 5, -11/*mean (0.242949), correlation (0.34145)*/,
        -11, -13, -5, -13/*mean (0.244028), correlation (0.336861)*/,
        -1, 6, 0, -1/*mean (0.247571), correlation (0.343684)*/,
        5, -3, 5, 2/*mean (0.000697256), correlation (0.357265)*/,
        -4, -13, -4, 12/*mean (0.00213675), correlation (0.373827)*/,
        -9, -6, -9, 6/*mean (0.0126856), correlation (0.373938)*/,
        -12, -10, -8, -4/*mean (0.0152497), correlation (0.364237)*/,
        10, 2, 12, -3/*mean (0.0299933), correlation (0.345292)*/,
        7, 12, 12, 12/*mean (0.0307242), correlation (0.366299)*/,
        -7, -13, -6, 5/*mean (0.0534975), correlation (0.368357)*/,
        -4, 9, -3, 4/*mean (0.099865), correlation (0.372276)*/,
        7, -1, 12, 2/*mean (0.117083), correlation (0.364529)*/,
        -7, 6, -5, 1/*mean (0.126125), correlation (0.369606)*/,
        -13, 11, -12, 5/*mean (0.130364), correlation (0.358502)*/,
        -3, 7, -2, -6/*mean (0.131691), correlation (0.375531)*/,
        7, -8, 12, -7/*mean (0.160166), correlation (0.379508)*/,
        -13, -7, -11, -12/*mean (0.167848), correlation (0.353343)*/,
        1, -3, 12, 12/*mean (0.183378), correlation (0.371916)*/,
        2, -6, 3, 0/*mean (0.228711), correlation (0.371761)*/,
        -4, 3, -2, -13/*mean (0.247211), correlation (0.364063)*/,
        -1, -13, 1, 9/*mean (0.249325), correlation (0.378139)*/,
        7, 1, 8, -6/*mean (0.000652272), correlation (0.411682)*/,
        1, -1, 3, 12/*mean (0.00248538), correlation (0.392988)*/,
        9, 1, 12, 6/*mean (0.0206815), correlation (0.386106)*/,
        -1, -9, -1, 3/*mean (0.0364485), correlation (0.410752)*/,
        -13, -13, -10, 5/*mean (0.0376068), correlation (0.398374)*/,
        7, 7, 10, 12/*mean (0.0424202), correlation (0.405663)*/,
        12, -5, 12, 9/*mean (0.0942645), correlation (0.410422)*/,
        6, 3, 7, 11/*mean (0.1074), correlation (0.413224)*/,
        5, -13, 6, 10/*mean (0.109256), correlation (0.408646)*/,
        2, -12, 2, 3/*mean (0.131691), correlation (0.416076)*/,
        3, 8, 4, -6/*mean (0.165081), correlation (0.417569)*/,
        2, 6, 12, -13/*mean (0.171874), correlation (0.408471)*/,
        9, -12, 10, 3/*mean (0.175146), correlation (0.41296)*/,
        -8, 4, -7, 9/*mean (0.183682), correlation (0.402956)*/,
        -11, 12, -4, -6/*mean (0.184672), correlation (0.416125)*/,
        1, 12, 2, -8/*mean (0.191487), correlation (0.386696)*/,
        6, -9, 7, -4/*mean (0.192668), correlation (0.394771)*/,
        2, 3, 3, -2/*mean (0.200157), correlation (0.408303)*/,
        6, 3, 11, 0/*mean (0.204588), correlation (0.411762)*/,
        3, -3, 8, -8/*mean (0.205904), correlation (0.416294)*/,
        7, 8, 9, 3/*mean (0.213237), correlation (0.409306)*/,
        -11, -5, -6, -4/*mean (0.243444), correlation (0.395069)*/,
        -10, 11, -5, 10/*mean (0.247672), correlation (0.413392)*/,
        -5, -8, -3, 12/*mean (0.24774), correlation (0.411416)*/,
        -10, 5, -9, 0/*mean (0.00213675), correlation (0.454003)*/,
        8, -1, 12, -6/*mean (0.0293635), correlation (0.455368)*/,
        4, -6, 6, -11/*mean (0.0404971), correlation (0.457393)*/,
        -10, 12, -8, 7/*mean (0.0481107), correlation (0.448364)*/,
        4, -2, 6, 7/*mean (0.050641), correlation (0.455019)*/,
        -2, 0, -2, 12/*mean (0.0525978), correlation (0.44338)*/,
        -5, -8, -5, 2/*mean (0.0629667), correlation (0.457096)*/,
        7, -6, 10, 12/*mean (0.0653846), correlation (0.445623)*/,
        -9, -13, -8, -8/*mean (0.0858749), correlation (0.449789)*/,
        -5, -13, -5, -2/*mean (0.122402), correlation (0.450201)*/,
        8, -8, 9, -13/*mean (0.125416), correlation (0.453224)*/,
        -9, -11, -9, 0/*mean (0.130128), correlation (0.458724)*/,
        1, -8, 1, -2/*mean (0.132467), correlation (0.440133)*/,
        7, -4, 9, 1/*mean (0.132692), correlation (0.454)*/,
        -2, 1, -1, -4/*mean (0.135695), correlation (0.455739)*/,
        11, -6, 12, -11/*mean (0.142904), correlation (0.446114)*/,
        -12, -9, -6, 4/*mean (0.146165), correlation (0.451473)*/,
        3, 7, 7, 12/*mean (0.147627), correlation (0.456643)*/,
        5, 5, 10, 8/*mean (0.152901), correlation (0.455036)*/,
        0, -4, 2, 8/*mean (0.167083), correlation (0.459315)*/,
        -9, 12, -5, -13/*mean (0.173234), correlation (0.454706)*/,
        0, 7, 2, 12/*mean (0.18312), correlation (0.433855)*/,
        -1, 2, 1, 7/*mean (0.185504), correlation (0.443838)*/,
        5, 11, 7, -9/*mean (0.185706), correlation (0.451123)*/,
        3, 5, 6, -8/*mean (0.188968), correlation (0.455808)*/,
        -13, -4, -8, 9/*mean (0.191667), correlation (0.459128)*/,
        -5, 9, -3, -3/*mean (0.193196), correlation (0.458364)*/,
        -4, -7, -3, -12/*mean (0.196536), correlation (0.455782)*/,
        6, 5, 8, 0/*mean (0.1972), correlation (0.450481)*/,
        -7, 6, -6, 12/*mean (0.199438), correlation (0.458156)*/,
        -13, 6, -5, -2/*mean (0.211224), correlation (0.449548)*/,
        1, -10, 3, 10/*mean (0.211718), correlation (0.440606)*/,
        4, 1, 8, -4/*mean (0.213034), correlation (0.443177)*/,
        -2, -2, 2, -13/*mean (0.234334), correlation (0.455304)*/,
        2, -12, 12, 12/*mean (0.235684), correlation (0.443436)*/,
        -2, -13, 0, -6/*mean (0.237674), correlation (0.452525)*/,
        4, 1, 9, 3/*mean (0.23962), correlation (0.444824)*/,
        -6, -10, -3, -5/*mean (0.248459), correlation (0.439621)*/,
        -3, -13, -1, 1/*mean (0.249505), correlation (0.456666)*/,
        7, 5, 12, -11/*mean (0.00119208), correlation (0.495466)*/,
        4, -2, 5, -7/*mean (0.00372245), correlation (0.484214)*/,
        -13, 9, -9, -5/*mean (0.00741116), correlation (0.499854)*/,
        7, 1, 8, 6/*mean (0.0208952), correlation (0.499773)*/,
        7, -8, 7, 6/*mean (0.0220085), correlation (0.501609)*/,
        -7, -4, -7, 1/*mean (0.0233806), correlation (0.496568)*/,
        -8, 11, -7, -8/*mean (0.0236505), correlation (0.489719)*/,
        -13, 6, -12, -8/*mean (0.0268781), correlation (0.503487)*/,
        2, 4, 3, 9/*mean (0.0323324), correlation (0.501938)*/,
        10, -5, 12, 3/*mean (0.0399235), correlation (0.494029)*/,
        -6, -5, -6, 7/*mean (0.0420153), correlation (0.486579)*/,
        8, -3, 9, -8/*mean (0.0548021), correlation (0.484237)*/,
        2, -12, 2, 8/*mean (0.0616622), correlation (0.496642)*/,
        -11, -2, -10, 3/*mean (0.0627755), correlation (0.498563)*/,
        -12, -13, -7, -9/*mean (0.0829622), correlation (0.495491)*/,
        -11, 0, -10, -5/*mean (0.0843342), correlation (0.487146)*/,
        5, -3, 11, 8/*mean (0.0929937), correlation (0.502315)*/,
        -2, -13, -1, 12/*mean (0.113327), correlation (0.48941)*/,
        -1, -8, 0, 9/*mean (0.132119), correlation (0.467268)*/,
        -13, -11, -12, -5/*mean (0.136269), correlation (0.498771)*/,
        -10, -2, -10, 11/*mean (0.142173), correlation (0.498714)*/,
        -3, 9, -2, -13/*mean (0.144141), correlation (0.491973)*/,
        2, -3, 3, 2/*mean (0.14892), correlation (0.500782)*/,
        -9, -13, -4, 0/*mean (0.150371), correlation (0.498211)*/,
        -4, 6, -3, -10/*mean (0.152159), correlation (0.495547)*/,
        -4, 12, -2, -7/*mean (0.156152), correlation (0.496925)*/,
        -6, -11, -4, 9/*mean (0.15749), correlation (0.499222)*/,
        6, -3, 6, 11/*mean (0.159211), correlation (0.503821)*/,
        -13, 11, -5, 5/*mean (0.162427), correlation (0.501907)*/,
        11, 11, 12, 6/*mean (0.16652), correlation (0.497632)*/,
        7, -5, 12, -2/*mean (0.169141), correlation (0.484474)*/,
        -1, 12, 0, 7/*mean (0.169456), correlation (0.495339)*/,
        -4, -8, -3, -2/*mean (0.171457), correlation (0.487251)*/,
        -7, 1, -6, 7/*mean (0.175), correlation (0.500024)*/,
        -13, -12, -8, -13/*mean (0.175866), correlation (0.497523)*/,
        -7, -2, -6, -8/*mean (0.178273), correlation (0.501854)*/,
        -8, 5, -6, -9/*mean (0.181107), correlation (0.494888)*/,
        -5, -1, -4, 5/*mean (0.190227), correlation (0.482557)*/,
        -13, 7, -8, 10/*mean (0.196739), correlation (0.496503)*/,
        1, 5, 5, -13/*mean (0.19973), correlation (0.499759)*/,
        1, 0, 10, -13/*mean (0.204465), correlation (0.49873)*/,
        9, 12, 10, -1/*mean (0.209334), correlation (0.49063)*/,
        5, -8, 10, -9/*mean (0.211134), correlation (0.503011)*/,
        -1, 11, 1, -13/*mean (0.212), correlation (0.499414)*/,
        -9, -3, -6, 2/*mean (0.212168), correlation (0.480739)*/,
        -1, -10, 1, 12/*mean (0.212731), correlation (0.502523)*/,
        -13, 1, -8, -10/*mean (0.21327), correlation (0.489786)*/,
        8, -11, 10, -6/*mean (0.214159), correlation (0.488246)*/,
        2, -13, 3, -6/*mean (0.216993), correlation (0.50287)*/,
        7, -13, 12, -9/*mean (0.223639), correlation (0.470502)*/,
        -10, -10, -5, -7/*mean (0.224089), correlation (0.500852)*/,
        -10, -8, -8, -13/*mean (0.228666), correlation (0.502629)*/,
        4, -6, 8, 5/*mean (0.22906), correlation (0.498305)*/,
        3, 12, 8, -13/*mean (0.233378), correlation (0.503825)*/,
        -4, 2, -3, -3/*mean (0.234323), correlation (0.476692)*/,
        5, -13, 10, -12/*mean (0.236392), correlation (0.475462)*/,
        4, -13, 5, -1/*mean (0.236842), correlation (0.504132)*/,
        -9, 9, -4, 3/*mean (0.236977), correlation (0.497739)*/,
        0, 3, 3, -9/*mean (0.24314), correlation (0.499398)*/,
        -12, 1, -6, 1/*mean (0.243297), correlation (0.489447)*/,
        3, 2, 4, -8/*mean (0.00155196), correlation (0.553496)*/,
        -10, -10, -10, 9/*mean (0.00239541), correlation (0.54297)*/,
        8, -13, 12, 12/*mean (0.0034413), correlation (0.544361)*/,
        -8, -12, -6, -5/*mean (0.003565), correlation (0.551225)*/,
        2, 2, 3, 7/*mean (0.00835583), correlation (0.55285)*/,
        10, 6, 11, -8/*mean (0.00885065), correlation (0.540913)*/,
        6, 8, 8, -12/*mean (0.0101552), correlation (0.551085)*/,
        -7, 10, -6, 5/*mean (0.0102227), correlation (0.533635)*/,
        -3, -9, -3, 9/*mean (0.0110211), correlation (0.543121)*/,
        -1, -13, -1, 5/*mean (0.0113473), correlation (0.550173)*/,
        -3, -7, -3, 4/*mean (0.0140913), correlation (0.554774)*/,
        -8, -2, -8, 3/*mean (0.017049), correlation (0.55461)*/,
        4, 2, 12, 12/*mean (0.01778), correlation (0.546921)*/,
        2, -5, 3, 11/*mean (0.0224022), correlation (0.549667)*/,
        6, -9, 11, -13/*mean (0.029161), correlation (0.546295)*/,
        3, -1, 7, 12/*mean (0.0303081), correlation (0.548599)*/,
        11, -1, 12, 4/*mean (0.0355151), correlation (0.523943)*/,
        -3, 0, -3, 6/*mean (0.0417904), correlation (0.543395)*/,
        4, -11, 4, 12/*mean (0.0487292), correlation (0.542818)*/,
        2, -4, 2, 1/*mean (0.0575124), correlation (0.554888)*/,
        -10, -6, -8, 1/*mean (0.0594242), correlation (0.544026)*/,
        -13, 7, -11, 1/*mean (0.0597391), correlation (0.550524)*/,
        -13, 12, -11, -13/*mean (0.0608974), correlation (0.55383)*/,
        6, 0, 11, -13/*mean (0.065126), correlation (0.552006)*/,
        0, -1, 1, 4/*mean (0.074224), correlation (0.546372)*/,
        -13, 3, -9, -2/*mean (0.0808592), correlation (0.554875)*/,
        -9, 8, -6, -3/*mean (0.0883378), correlation (0.551178)*/,
        -13, -6, -8, -2/*mean (0.0901035), correlation (0.548446)*/,
        5, -9, 8, 10/*mean (0.0949843), correlation (0.554694)*/,
        2, 7, 3, -9/*mean (0.0994152), correlation (0.550979)*/,
        -1, -6, -1, -1/*mean (0.10045), correlation (0.552714)*/,
        9, 5, 11, -2/*mean (0.100686), correlation (0.552594)*/,
        11, -3, 12, -8/*mean (0.101091), correlation (0.532394)*/,
        3, 0, 3, 5/*mean (0.101147), correlation (0.525576)*/,
        -1, 4, 0, 10/*mean (0.105263), correlation (0.531498)*/,
        3, -6, 4, 5/*mean (0.110785), correlation (0.540491)*/,
        -13, 0, -10, 5/*mean (0.112798), correlation (0.536582)*/,
        5, 8, 12, 11/*mean (0.114181), correlation (0.555793)*/,
        8, 9, 9, -6/*mean (0.117431), correlation (0.553763)*/,
        7, -4, 8, -12/*mean (0.118522), correlation (0.553452)*/,
        -10, 4, -10, 9/*mean (0.12094), correlation (0.554785)*/,
        7, 3, 12, 4/*mean (0.122582), correlation (0.555825)*/,
        9, -7, 10, -2/*mean (0.124978), correlation (0.549846)*/,
        7, 0, 12, -2/*mean (0.127002), correlation (0.537452)*/,
        -1, -6, 0, -11/*mean (0.127148), correlation (0.547401)*/
};

// compute the descriptor
void computeORBDesc(const cv::Mat &image, vector<cv::KeyPoint> &keypoints, vector<DescType> &desc) {
    for (auto &kp: keypoints) {
        DescType d(256, false);
        for (int i = 0; i < 256; i++) {
            // START YOUR CODE HERE (~7 lines)
            auto cos_ = float(cos(kp.angle*pi/180)); //将角度转换成弧度再进行cos、sin的计算
            auto sin_ = float(sin(kp.angle*pi/180));
            //注意pattern中的数如何取
            cv::Point2f p_r(cos_*ORB_pattern[4*i]-sin_*ORB_pattern[4*i+1],
                    sin_*ORB_pattern[4*i]+cos_*ORB_pattern[4*i+1]);
            cv::Point2f q_r(cos_*ORB_pattern[4*i+2]-sin_*ORB_pattern[4*i+3],
                    sin_*ORB_pattern[4*i+2]+cos_*ORB_pattern[4*i+3]);
 
            cv::Point2f p(kp.pt+p_r); //获取p'与q'的真实坐标,才能获得其像素值
            cv::Point2f q(kp.pt+q_r);
 
            // if kp goes outside, set d.clear()
            if(p.x<0||p.y<0||p.x>image.cols||p.y>image.rows||
            q.x<0||q.y<0||q.x>image.cols||q.y>image.rows){
                d.clear();
                break;
            }
            //像素值比较
             d[i]=image.at<uchar>(p)>image.at<uchar>(q)?0:1; 
	    // END YOUR CODE HERE
        }
        desc.push_back(d);
    }

    int bad = 0;
    for (auto &d: desc) {
        if (d.empty()) bad++;
    }
    cout << "bad/total: " << bad << "/" << desc.size() << endl;
    return;
}

// brute-force matching
void bfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches) {
    int d_max = 50;

    // START YOUR CODE HERE (~12 lines)
    // find matches between desc1 and desc2. 
    for(int i=0;i<desc1.size();i++){
        if(desc1[i].empty())
            continue;
        int d_min=256 ,index=-1; //必须定义在这里,每次循环重新初始化
        for(int j=0;j<desc2.size();j++){ //这个for循环,取出最小的d_min
            if(desc2[j].empty())
                continue;
            int d=0; //必须定义在这里,每次循环重新初始化
            for(int k=0;k<256;k++){
                d += desc1[i][k]^desc2[j][k]; //异或:不同为1;
            }
            if(d<d_min){
                d_min=d;
                index=j;
            }
        }
        if(d_min<=d_max){
            cv::DMatch match(i,index,d_min);
            matches.push_back(match);
        }
    }
    // END YOUR CODE HERE

    for (auto &m: matches) {
        cout << m.queryIdx << ", " << m.trainIdx << ", " << m.distance << endl;
    }
    return;
}

CMakeLists.txt:

cmake_minimum_required( VERSION 2.8 )
project(stereoVision)
set( CMAKE_CXX_FLAGS "-std=c++11 -O3")
 
include_directories("/usr/include/eigen3")
find_package(Pangolin REQUIRED)
include_directories( ${Pangolin_INCLUDE_DIRS} )
 
find_package(OpenCV 3.0 QUIET) #find_package(<Name>)命令首先会在模块路径中寻找 Find<name>.cmake
if(NOT OpenCV_FOUND)
    find_package(OpenCV 2.4.3 QUIET)
    if(NOT OpenCV_FOUND)
        message(FATAL_ERROR "OpenCV > 2.4.3 not found.")
    endif()
endif()

include_directories(${OpenCV_INCLUDE_DIRS})

add_executable(computeORB computeORB.cpp)
target_link_libraries(computeORB ${OpenCV_LIBS})

然后就是五件套
mkdir build
cd build
cmake …
make
./computeORB
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
然后是简答题:

1.为什么说 ORB 是⼀种⼆进制特征?
ORB使用改进的BRIEF特征描述,而BRIEF是一种二进制的描述子,其描述向量由许多个0和1组成。也就是说ORB采用二进制的描述子用来描述每个特征点的特征信息。

2.为什么在匹配时使⽤ 50 作为阈值,取更⼤或更⼩值会怎么样? 当阈值为50的时候,可以检测出的特征对有95个匹配的特征对。但存在一些误匹配的点对。
在这里插入图片描述
当阈值为30的时候,可以检测到的特征点对很少,当然我还检测了20的时候,到20就一对特征点对也检测不出来了。
在这里插入图片描述
当阈值设置为90时,可以检测到非常多的个点对,误匹配很多
在这里插入图片描述

3.暴⼒匹配在你的机器上表现如何?你能想到什么减少计算量的匹配⽅法吗? 在这里插入图片描述
运行时间如图所示,使用快速近似最近邻的方法(FLANN)。
在这里插入图片描述

2.从 E 恢复 R,t

在这里插入图片描述
首先说一下运行中碰到的问题吧:
第一个问题:
在这里插入图片描述
如果碰到这个情况,那就是我们的E2Rt文件中找不到#include <sophus/so3.hpp>,只需要改为#include <sophus/so3.h>就可以了。
第二个问题:

在这里插入图片描述
如果是这种情况,我们就需要把E2Rt文件中62、63行的(文件中所有的)so3d改为so3即可。

E2Rt.cpp

#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/Geometry>

using namespace Eigen;

#include <sophus/so3.h>

#include <iostream>

using namespace std;

int main(int argc, char **argv) {

    // 给定Essential矩阵
    Matrix3d E;
    E << -0.0203618550523477, -0.4007110038118445, -0.03324074249824097,
            0.3939270778216369, -0.03506401846698079, 0.5857110303721015,
            -0.006788487241438284, -0.5815434272915686, -0.01438258684486258;

    // 待计算的R,t
    Matrix3d R;
    Vector3d t;

    // SVD and fix sigular values
    // START YOUR CODE HERE
      JacobiSVD<MatrixXd> svd(E,ComputeThinU | ComputeThinV);
    Matrix3d U=svd.matrixU();
    Matrix3d V=svd.matrixV();
    VectorXd sigma_value=svd.singularValues();
    Matrix3d SIGMA=U.inverse()*E*V.transpose().inverse();
    Vector3d sigma_value2={(sigma_value[0]+sigma_value[1])/2,(sigma_value[0]+sigma_value[1])/2,0};
    Matrix3d SIGMA2=sigma_value2.asDiagonal();
    cout<<"SIGMA=\n"<<SIGMA<<endl;
    cout<<"sigma_value=\n"<<sigma_value<<endl;
    cout<<"SIGMA2=\n"<<SIGMA<<endl;
    cout<<"sigma_value2=\n"<<sigma_value<<endl;
    // END YOUR CODE HERE

    // set t1, t2, R1, R2 
    // START YOUR CODE HERE
    Matrix3d t_wedge1;
    Matrix3d t_wedge2;

    Matrix3d R1;
    Matrix3d R2;
     Matrix3d RZ1=AngleAxisd(M_PI/2,Vector3d(0,0,1)).toRotationMatrix();
    Matrix3d RZ2=AngleAxisd(-M_PI/2,Vector3d(0,0,1)).toRotationMatrix();
    t_wedge1=U*RZ1*SIGMA2*U.transpose();
    t_wedge2=U*RZ2*SIGMA2*U.transpose();
    R1=U*RZ1.transpose()*V.transpose();
    R2=U*RZ2.transpose()*V.transpose();
    // END YOUR CODE HERE

    cout << "R1 = " << R1 << endl;
    cout << "R2 = " << R2 << endl;
    cout << "t1 = " << Sophus::SO3::vee(t_wedge1) << endl;
    cout << "t2 = " << Sophus::SO3::vee(t_wedge2) << endl;

    // check t^R=E up to scale
    Matrix3d tR = t_wedge1 * R1;
    cout << "t^R = " << tR << endl;

    return 0;
}

CMakeLists.txt:

cmake_minimum_required(VERSION 3.0)
project(E2RT)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE "Release")

#添加头文件
include_directories( "/usr/include/eigen3")
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})

add_executable(E2Rt E2Rt.cpp)
#链接OpenCV库
target_link_libraries(E2Rt ${Sophus_LIBRARIES})

运行结果如下:
在这里插入图片描述

3.用 G-N 实现 Bundle Adjustment

在这里插入图片描述
这里如果cmake …
make有问题的话,和上一题的解决方法是一样的。

GN-BA.cpp

#include <Eigen/Core>
#include <Eigen/Dense>

using namespace Eigen;

#include <vector>
#include <fstream>
#include <iostream>
#include <iomanip>

#include "sophus/se3.h"

using namespace std;

typedef vector<Vector3d, Eigen::aligned_allocator<Vector3d>> VecVector3d;
typedef vector<Vector2d, Eigen::aligned_allocator<Vector3d>> VecVector2d;
typedef Matrix<double, 6, 1> Vector6d;

string p3d_file = "../p3d.txt";
string p2d_file = "../p2d.txt";

int main(int argc, char **argv) {

    VecVector2d p2d;
    VecVector3d p3d;
    Matrix3d K;
    double fx = 520.9, fy = 521.0, cx = 325.1, cy = 249.7;
    K << fx, 0, cx, 0, fy, cy, 0, 0, 1;

    // load points in to p3d and p2d 
    // START YOUR CODE HERE
    ifstream p3d_fin(p3d_file);
    ifstream p2d_fin(p2d_file);
    Vector3d p3d_input;
    Vector2d p2d_input;
    if (!p3d_fin) {
        cerr << "p3d_fin " << p3d_file << " not found." << endl;
    }
    while (!p3d_fin.eof()) {
        p3d_fin >> p3d_input(0) >> p3d_input(1) >> p3d_input(2);
        p3d.push_back(p3d_input);
    }
    p3d_fin.close();

    if (!p2d_fin) {
        cerr << "p2d_fin " << p2d_file << " not found." << endl;
    }
    while (!p2d_fin.eof()) {
        p2d_fin >> p2d_input(0) >> p2d_input(1);
        p2d.push_back(p2d_input);
    }
    p2d_fin.close();
    // END YOUR CODE HERE
    assert(p3d.size() == p2d.size());

    int iterations = 100;
    double cost = 0, lastCost = 0;
    int nPoints = p3d.size();
    cout << "points: " << nPoints << endl;

    Sophus::SE3 T_esti; // estimated pose

    for (int iter = 0; iter < iterations; iter++) {

        Matrix<double, 6, 6> H = Matrix<double, 6, 6>::Zero();
        Vector6d b = Vector6d::Zero();

        cost = 0;
        // compute cost
        for (int i = 0; i < nPoints; i++) {
            // compute cost for p3d[I] and p2d[I]
            // START YOUR CODE HERE 
            Eigen::Vector3d pc = T_esti * p3d[i];
            Eigen::Vector2d proj(fx * pc[0] / pc[2] + cx, fy * pc[1] / pc[2] + cy);
            Eigen::Vector2d e = p2d[i] - proj;

            cost += e.squaredNorm()/2;
	    // END YOUR CODE HERE

	    // compute jacobian
            Matrix<double, 2, 6> J;
            // START YOUR CODE HERE
            double inv_z = 1.0 / pc[2];
            double inv_z2 = inv_z * inv_z;
            J << -fx * inv_z,
                    0,
                    fx * pc[0] * inv_z2,
                    fx * pc[0] * pc[1] * inv_z2,
                    -fx - fx * pc[0] * pc[0] * inv_z2,
                    fx * pc[1] * inv_z,
                    0,
                    -fy * inv_z,
                    fy * pc[1] * inv_z2,
                    fy + fy * pc[1] * pc[1] * inv_z2,
                    -fy * pc[0] * pc[1] * inv_z2,
                    -fy * pc[0] * inv_z;
	    // END YOUR CODE HERE

            H += J.transpose() * J;
            b += -J.transpose() * e;
        }

	// solve dx 
        Vector6d dx;

        // START YOUR CODE HERE 
        dx = H.ldlt().solve(b);
        // END YOUR CODE HERE

        if (isnan(dx[0])) {
            cout << "result is nan!" << endl;
            break;
        }

        if (iter > 0 && cost >= lastCost) {
            // cost increase, update is not good
            cout << "cost: " << cost << ", last cost: " << lastCost << endl;
            break;
        }

        // update your estimation
        // START YOUR CODE HERE 
        T_esti = Sophus::SE3::exp(dx) * T_esti;
        // END YOUR CODE HERE
        
        lastCost = cost;

        cout << "iteration " << iter << " cost=" << cout.precision(12) << cost << endl;
    }

    cout << "estimated pose: \n" << T_esti.matrix() << endl;
    return 0;
}

CMakeLists.txt:

cmake_minimum_required(VERSION 3.0)

project(E2RT)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE "Release")

#添加头文件
include_directories( "/usr/include/eigen3")
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})


add_executable(gn_ba GN-BA.cpp)

#链接OpenCV库
target_link_libraries(gn_ba ${Sophus_LIBRARIES})

运行结果:
在这里插入图片描述
1.如何定义重投影误差?

像素位置与空间点的位置关系如下:
在这里插入图片描述
写成矩阵形式为Siui=KTPi

由于相机位姿未知及观测点的噪声,该等式存在一个误差。把误差求和,构建最小二乘问题,然后寻找最好的相机位姿,使它最小化:
在这里插入图片描述
将该问题的误差项,是将3D点的投影与观测位置做差,称之为重投影误差。

2.该误差关于⾃变量的雅可⽐矩阵是什么?
在这里插入图片描述

3.解出更新量之后,如何更新⾄之前的估计上?
左乘或右乘微小扰动exp(dx)
代码中为左乘

4.* 用 ICP 实现轨迹对齐

在这里插入图片描述
icp.cpp

#include <sophus/se3.h>
#include <string>
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <opencv2/core/core.hpp>
#include <pangolin/pangolin.h>
#include <unistd.h>

using namespace std;
using namespace Eigen;
using namespace cv;

string trajectory_file = "../compare.txt";

void pose_estimation_3d3d(const vector<Point3f> &pts1,const vector<Point3f> &pts2, Eigen::Matrix3d &R_, Eigen::Vector3d &t_);
void DrawTrajectory(vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_e,
        vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_g,
        const string& ID);

int main(int argc, char **argv) {

    vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_e;
    vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_g;
    vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_gt;
    vector<Point3f> pts_e,pts_g;
    ifstream fin(trajectory_file);
    if(!fin){
        cerr<<"can't find file at "<<trajectory_file<<endl;
        return 1;
    }
    while(!fin.eof()){
        double t1,tx1,ty1,tz1,qx1,qy1,qz1,qw1;
        double t2,tx2,ty2,tz2,qx2,qy2,qz2,qw2;
        fin>>t1>>tx1>>ty1>>tz1>>qx1>>qy1>>qz1>>qw1>>t2>>tx2>>ty2>>tz2>>qx2>>qy2>>qz2>>qw2;
        pts_e.push_back(Point3f(tx1,ty1,tz1));
        pts_g.push_back(Point3f(tx2,ty2,tz2));
        poses_e.push_back(Sophus::SE3(Quaterniond(qw1,qx1,qy1,qz1),Vector3d(tx1,ty1,tz1)));
        poses_g.push_back(Sophus::SE3(Quaterniond(qw2,qx2,qy2,qz2),Vector3d(tx2,ty2,tz2)));
    }

    Matrix3d R;
    Vector3d t;
    pose_estimation_3d3d(pts_e,pts_g,R,t);
    Sophus::SE3 T_eg(R,t);
    for(auto SE_g:poses_g)    {
        Sophus::SE3 T_e=T_eg*SE_g;
        poses_gt.push_back(T_e);
    }
    DrawTrajectory(poses_e,poses_g," Before Align");
    DrawTrajectory(poses_e,poses_gt," After Align");
    return 0;
}

void pose_estimation_3d3d(const vector<Point3f> &pts1,
                          const vector<Point3f> &pts2,
                          Eigen::Matrix3d &R_, Eigen::Vector3d &t_) {
    Point3f p1, p2;     // center of mass
    int N = pts1.size();
    for (int i = 0; i < N; i++) {
        p1 += pts1[i];
        p2 += pts2[i];
    }
    p1 = Point3f(Vec3f(p1) / N);
    p2 = Point3f(Vec3f(p2) / N);
    vector<Point3f> q1(N), q2(N); // remove the center
    for (int i = 0; i < N; i++) {
        q1[i] = pts1[i] - p1;
        q2[i] = pts2[i] - p2;
    }

    // compute q1*q2^T
    Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
    for (int i = 0; i < N; i++) {
        W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d(q2[i].x, q2[i].y, q2[i].z).transpose();
    }
    cout << "W=" << W << endl;

    // SVD on W
    Eigen::JacobiSVD<Eigen::Matrix3d> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV);
    Eigen::Matrix3d U = svd.matrixU();
    Eigen::Matrix3d V = svd.matrixV();

    cout << "U=" << U << endl;
    cout << "V=" << V << endl;

    R_ = U * (V.transpose());
    if (R_.determinant() < 0) {
        R_ = -R_;
    }
    t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d(p2.x, p2.y, p2.z);
}

void DrawTrajectory(vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_e,
        vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_g,
        const string& ID) {
    if (poses_e.empty() || poses_g.empty()) {
        cerr << "Trajectory is empty!" << endl;
        return;
    }

    string windowtitle = "Trajectory Viewer" + ID;
    // create pangolin window and plot the trajectory
    pangolin::CreateWindowAndBind(windowtitle, 1024, 768);
    glEnable(GL_DEPTH_TEST);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

    pangolin::OpenGlRenderState s_cam(
            pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
            pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
    );

    pangolin::View &d_cam = pangolin::CreateDisplay()
            .SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
            .SetHandler(new pangolin::Handler3D(s_cam));


    while (pangolin::ShouldQuit() == false) {
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        d_cam.Activate(s_cam);
        glClearColor(1.0f, 1.0f, 1.0f, 1.0f);

        glLineWidth(2);
        for (size_t i = 0; i < poses_e.size() - 1; i++) {
            glColor3f(1.0f, 0.0f, 0.0f);
            glBegin(GL_LINES);
            auto p1 = poses_e[i], p2 = poses_e[i + 1];
            glVertex3d(p1.translation()[0], p1.translation()[1], p1.translation()[2]);
            glVertex3d(p2.translation()[0], p2.translation()[1], p2.translation()[2]);
            glEnd();
        }
        for (size_t i = 0; i < poses_g.size() - 1; i++) {
            glColor3f(0.0f, 0.0f, 1.0f);
            glBegin(GL_LINES);
            auto p1 = poses_g[i], p2 = poses_g[i + 1];
            glVertex3d(p1.translation()[0], p1.translation()[1], p1.translation()[2]);
            glVertex3d(p2.translation()[0], p2.translation()[1], p2.translation()[2]);
            glEnd();
        }
        pangolin::FinishFrame();
        usleep(5000);   // sleep 5 ms
    }
}

compare.txt:

1305031526.671473 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 1.000000000 1305031526.672100 1.5015 0.9306 1.4503 0.8703 0.1493 -0.1216 -0.4533
1305031526.707547 0.002883195 -0.004662100 -0.002254304 0.011409802 0.010697415 0.002189494 0.999875307 1305031526.712200 1.5062 0.9251 1.4551 0.8637 0.1395 -0.1130 -0.4710
1305031526.771481 0.013978966 -0.013082317 -0.010869596 0.043280017 0.032526672 0.003260542 0.998528004 1305031526.772200 1.5119 0.9142 1.4651 -0.8502 -0.1262 0.0954 0.5021
1305031526.807455 -0.001601209 -0.011404546 -0.026841529 0.073491804 0.052071322 0.000915701 0.995935082 1305031526.812100 1.5152 0.9063 1.4724 -0.8341 -0.1188 0.0871 0.5316
1305031526.871446 -0.004428456 -0.001333938 -0.042973492 0.115341254 0.070847765 -0.006601509 0.990774155 1305031526.872200 1.5177 0.8921 1.4824 -0.8172 -0.1124 0.0738 0.5605
1305031526.907484 -0.006487503 -0.003464771 -0.058195263 0.135408968 0.081248961 -0.010381512 0.987398207 1305031526.912200 1.5189 0.8828 1.4886 -0.8039 -0.1062 0.0656 0.5816
1305031526.939618 -0.014331216 -0.013660092 -0.078787915 0.147756621 0.091927201 -0.015138508 0.984625876 1305031526.942100 1.5196 0.8752 1.4926 -0.7958 -0.1012 0.0594 0.5941
1305031526.971510 -0.018625503 -0.015494643 -0.089080200 0.165385425 0.100416750 -0.017430481 0.980948687 1305031526.972200 1.5197 0.8664 1.4958 -0.7881 -0.0951 0.0537 0.6058
1305031527.007595 -0.020048823 -0.005540572 -0.097900160 0.181910872 0.106515355 -0.017926607 0.977364600 1305031527.012100 1.5209 0.8569 1.4996 -0.7795 -0.0899 0.0483 0.6180
1305031527.039512 -0.023435375 -0.009148147 -0.106970325 0.195644155 0.113224901 -0.019022474 0.973931015 1305031527.042100 1.5218 0.8500 1.5023 -0.7711 -0.0861 0.0444 0.6292
1305031527.071487 -0.026807848 0.004425369 -0.112307228 0.213958293 0.120352432 -0.020585811 0.969181776 1305031527.072300 1.5234 0.8450 1.5043 -0.7608 -0.0831 0.0422 0.6422
1305031527.107498 -0.031070728 0.004864503 -0.118102826 0.221194029 0.125381440 -0.019031256 0.966949105 1305031527.112200 1.5243 0.8380 1.5057 -0.7542 -0.0789 0.0399 0.6506
1305031527.139473 -0.030610107 0.008234076 -0.122761726 0.232777029 0.129590198 -0.020409001 0.963641405 1305031527.142100 1.5258 0.8327 1.5068 -0.7480 -0.0759 0.0366 0.6583
1305031527.171540 -0.032993812 0.018031888 -0.131125793 0.240357533 0.133578792 -0.019260569 0.961256444 1305031527.172200 1.5266 0.8284 1.5067 -0.7443 -0.0716 0.0348 0.6630
1305031527.207588 -0.036744710 0.020500474 -0.137645885 0.239894286 0.135950848 -0.017296137 0.961076975 1305031527.212200 1.5271 0.8251 1.5055 -0.7444 -0.0708 0.0335 0.6631
1305031527.271501 -0.043445326 0.041889958 -0.136677355 0.232142463 0.137271211 -0.013112986 0.962857485 1305031527.272100 1.5270 0.8228 1.5007 -0.7554 -0.0680 0.0323 0.6509
1305031527.307472 -0.046960510 0.043947175 -0.127684563 0.222602263 0.136040613 -0.011219901 0.965305805 1305031527.312200 1.5265 0.8244 1.4961 -0.7622 -0.0684 0.0363 0.6427
1305031527.339636 -0.045433633 0.050494798 -0.122109100 0.214023039 0.131844014 -0.006879775 0.967865646 1305031527.322100 1.5263 0.8245 1.4947 -0.7647 -0.0680 0.0377 0.6397
1305031527.539741 -0.040670216 0.068688609 -0.094280347 0.155639857 0.128989607 0.007390451 0.979327977 1305031527.532200 1.5213 0.8354 1.4665 -0.7993 -0.0665 0.0447 0.5955
1305031527.671547 -0.059779059 0.086170383 -0.080027580 0.096256085 0.124875024 0.008046621 0.987459481 1305031527.672100 1.5107 0.8404 1.4443 -0.8388 -0.0797 0.0411 0.5370
1305031527.707520 -0.062977917 0.080318302 -0.075421400 0.081575632 0.118124433 0.010604718 0.989585578 1305031527.712200 1.5059 0.8406 1.4390 -0.8461 -0.0839 0.0480 0.5241
1305031527.771461 -0.063968100 0.079457901 -0.070676021 0.062909685 0.104486309 0.013305012 0.992445469 1305031527.772100 1.4984 0.8395 1.4327 -0.8526 -0.0880 0.0560 0.5121
1305031527.807581 -0.067149058 0.071368024 -0.072235338 0.050288275 0.096843056 0.014775201 0.993918598 1305031527.812200 1.4922 0.8378 1.4290 -0.8564 -0.0930 0.0630 0.5039
1305031527.839601 -0.084145665 0.083385780 -0.065109350 0.049927417 0.091642611 0.016088929 0.994409442 1305031527.842200 1.4867 0.8363 1.4265 -0.8574 -0.0980 0.0705 0.5003
1305031527.871464 -0.094857678 0.090055093 -0.066003457 0.044405133 0.080871582 0.012684624 0.995654106 1305031527.872100 1.4804 0.8341 1.4237 0.8603 0.1070 -0.0783 -0.4922
1305031527.907477 -0.099260926 0.085766435 -0.058261685 0.034565847 0.067202255 0.009141340 0.997098565 1305031527.912100 1.4708 0.8306 1.4204 0.8617 0.1210 -0.0879 -0.4849
1305031527.939566 -0.114897557 0.077028573 -0.058029801 0.028592139 0.054828048 0.000756203 0.998086035 1305031527.942100 1.4628 0.8271 1.4192 0.8586 0.1365 -0.0964 -0.4847
1305031527.971502 -0.125279635 0.082915515 -0.061315395 0.033042073 0.038314771 -0.013166402 0.998632491 1305031527.972200 1.4545 0.8231 1.4180 0.8531 0.1537 -0.1048 -0.4875
1305031528.039560 -0.149975643 0.084671959 -0.052950244 0.036809143 0.004435565 -0.046019781 0.998252273 1305031528.042200 1.4350 0.8113 1.4166 0.8395 0.1968 -0.1235 -0.4911
1305031528.071546 -0.160694852 0.087861642 -0.055381063 0.043458812 -0.012107812 -0.061667852 0.997076631 1305031528.072100 1.4269 0.8052 1.4168 0.8321 0.2141 -0.1310 -0.4947
1305031528.107513 -0.176289976 0.090757042 -0.055422220 0.049189046 -0.027869513 -0.077940412 0.995353699 1305031528.112200 1.4157 0.7957 1.4172 0.8213 0.2395 -0.1415 -0.4982
1305031528.139513 -0.182451800 0.096339859 -0.055684097 0.055754602 -0.047568955 -0.096469797 0.992633939 1305031528.142100 1.4076 0.7880 1.4177 -0.8129 -0.2579 0.1482 0.5008
1305031528.171523 -0.189394832 0.097757049 -0.056705259 0.059309058 -0.062220436 -0.113738760 0.989785075 1305031528.172100 1.3999 0.7798 1.4182 -0.8057 -0.2750 0.1516 0.5023
1305031528.207527 -0.202431262 0.095546886 -0.061502121 0.064778626 -0.071393289 -0.133537352 0.986344039 1305031528.212100 1.3902 0.7684 1.4191 -0.7934 -0.2930 0.1537 0.5109
1305031528.239493 -0.211042851 0.098279119 -0.066208452 0.074096076 -0.080469146 -0.148469865 0.982848525 1305031528.242200 1.3834 0.7599 1.4203 -0.7816 -0.3053 0.1570 0.5208
1305031528.275450 -0.223710716 0.104189500 -0.073275700 0.081444807 -0.093165532 -0.159726724 0.979374468 1305031528.272200 1.3757 0.7500 1.4218 -0.7755 -0.3204 0.1620 0.5193
1305031528.307665 -0.244773716 0.107162125 -0.078257680 0.089617550 -0.112386964 -0.174391136 0.974128127 1305031528.312100 1.3670 0.7361 1.4255 -0.7607 -0.3420 0.1774 0.5223
1305031528.339593 -0.267502815 0.119377658 -0.079869874 0.100359902 -0.131352678 -0.185550600 0.968630672 1305031528.342100 1.3592 0.7261 1.4284 -0.7470 -0.3576 0.1940 0.5259
1305031528.375435 -0.277227014 0.122483246 -0.086401798 0.105153799 -0.156168520 -0.190717027 0.963421524 1305031528.372100 1.3526 0.7159 1.4316 -0.7373 -0.3709 0.2099 0.5242
1305031528.407459 -0.286472470 0.125400484 -0.096434973 0.109714307 -0.185297355 -0.197440162 0.956370771 1305031528.412200 1.3435 0.7011 1.4363 -0.7218 -0.3905 0.2364 0.5202
1305031528.439469 -0.294514090 0.129935056 -0.100482926 0.113646500 -0.217375934 -0.202731520 0.948014855 1305031528.442100 1.3372 0.6902 1.4400 -0.7103 -0.4054 0.2555 0.5156
1305031528.475342 -0.309931368 0.129882887 -0.129739463 0.111446232 -0.240962654 -0.210141197 0.940934300 1305031528.472100 1.3311 0.6784 1.4431 -0.7014 -0.4167 0.2744 0.5090
1305031528.539626 -0.329695433 0.143418118 -0.155989200 0.111015044 -0.298002064 -0.219036371 0.922438860 1305031528.542200 1.3180 0.6526 1.4496 0.6736 0.4500 -0.3218 -0.4902
1305031528.575449 -0.329237044 0.149565578 -0.154559985 0.106090672 -0.328091890 -0.223088816 0.911773980 1305031528.572300 1.3133 0.6410 1.4507 0.6649 0.4635 -0.3380 -0.4782
1305031528.607841 -0.340293765 0.151535481 -0.160942093 0.099514537 -0.350554526 -0.228903219 0.902669191 1305031528.612200 1.3094 0.6251 1.4510 0.6549 0.4788 -0.3560 -0.4638
1305031528.639487 -0.340425193 0.165493459 -0.169357076 0.096142113 -0.372110546 -0.231576025 0.893679440 1305031528.642100 1.3070 0.6131 1.4497 0.6474 0.4893 -0.3666 -0.4550
1305031528.707447 -0.339044899 0.179300487 -0.177713454 0.078025557 -0.396103621 -0.245452717 0.881343842 1305031528.712200 1.3036 0.5843 1.4413 0.6416 0.5122 -0.3716 -0.4335
1305031528.739609 -0.342159748 0.189583004 -0.177449271 0.070908576 -0.403506339 -0.253377467 0.876330137 1305031528.742100 1.3022 0.5717 1.4362 0.6380 0.5205 -0.3731 -0.4277
1305031528.775443 -0.341898620 0.206203520 -0.174872875 0.064870313 -0.407845527 -0.261114776 0.872509539 1305031528.772100 1.3019 0.5591 1.4304 0.6397 0.5275 -0.3680 -0.4209
1305031528.807559 -0.348404497 0.222904056 -0.195781291 0.056483749 -0.403348863 -0.271214008 0.872102201 1305031528.812100 1.3009 0.5418 1.4213 0.6417 0.5382 -0.3614 -0.4098
1305031528.839572 -0.353144258 0.236203671 -0.200213343 0.045424741 -0.405389339 -0.278263241 0.869577825 1305031528.842200 1.2998 0.5287 1.4140 0.6412 0.5445 -0.3598 -0.4036
1305031528.875433 -0.357103825 0.256649941 -0.206021339 0.036655750 -0.406093627 -0.286254942 0.867065430 1305031528.872100 1.2985 0.5151 1.4065 0.6435 0.5524 -0.3545 -0.3939
1305031528.907519 -0.363840312 0.273261279 -0.213352874 0.023924233 -0.403293431 -0.293037355 0.866551280 1305031528.912100 1.2962 0.4966 1.3960 0.6491 0.5605 -0.3457 -0.3808
1305031528.939602 -0.373810410 0.280675173 -0.220558763 0.005930781 -0.399948001 -0.299453437 0.866218269 1305031528.942100 1.2942 0.4819 1.3883 0.6557 0.5642 -0.3396 -0.3692
1305031528.975465 -0.383288622 0.293885916 -0.225069121 -0.007588292 -0.398547530 -0.297109455 0.867656767 1305031528.972100 1.2922 0.4665 1.3810 0.6627 0.5621 -0.3385 -0.3610
1305031529.007487 -0.387591243 0.312122375 -0.228814498 -0.022781339 -0.395879656 -0.293224841 0.869930744 1305031529.012100 1.2880 0.4447 1.3704 0.6751 0.5606 -0.3311 -0.3470
1305031529.039494 -0.396930993 0.326887786 -0.233368337 -0.039953087 -0.387588739 -0.290734917 0.873871803 1305031529.042100 1.2848 0.4279 1.3625 0.6879 0.5564 -0.3221 -0.3367
1305031529.075422 -0.409061730 0.334867179 -0.235107094 -0.057665374 -0.375858516 -0.282847494 0.880569339 1305031529.072100 1.2813 0.4105 1.3549 0.7035 0.5454 -0.3135 -0.3306
1305031529.107523 -0.420381188 0.348994136 -0.244129315 -0.070332937 -0.359931797 -0.270585924 0.890104294 1305031529.112100 1.2759 0.3862 1.3451 0.7244 0.5267 -0.3032 -0.3256
1305031529.139597 -0.432475984 0.367254645 -0.253846556 -0.084366389 -0.344622523 -0.252671927 0.900152504 1305031529.142200 1.2710 0.3666 1.3378 0.7418 0.5092 -0.2977 -0.3190
1305031529.175411 -0.442705750 0.384032130 -0.264635384 -0.099091217 -0.330286026 -0.234458074 0.908912241 1305031529.172100 1.2660 0.3461 1.3310 0.7603 0.4912 -0.2910 -0.3100
1305031529.207466 -0.461968184 0.417857319 -0.283306688 -0.107409544 -0.308710963 -0.220306739 0.919035196 1305031529.212100 1.2578 0.3180 1.3227 0.7825 0.4731 -0.2775 -0.2947
1305031529.239515 -0.474564463 0.434241831 -0.290974945 -0.122858316 -0.295257181 -0.214269757 0.922939599 1305031529.242200 1.2501 0.2972 1.3166 0.7943 0.4646 -0.2658 -0.2874
1305031529.275389 -0.488497406 0.454518944 -0.299479723 -0.134992152 -0.277170092 -0.211710542 0.927433312 1305031529.272100 1.2422 0.2763 1.3115 0.8063 0.4580 -0.2489 -0.2797
1305031529.307413 -0.505657196 0.462695599 -0.306875080 -0.152041495 -0.259664267 -0.206709743 0.930982769 1305031529.312200 1.2305 0.2483 1.3063 0.8194 0.4484 -0.2302 -0.2732
1305031529.339486 -0.530183196 0.486928225 -0.326155573 -0.160189480 -0.237766638 -0.205552071 0.935710788 1305031529.342100 1.2210 0.2270 1.3029 0.8282 0.4457 -0.2162 -0.2622
1305031529.375399 -0.554967403 0.482978404 -0.331514835 -0.181723729 -0.229372948 -0.205984905 0.933774471 1305031529.372100 1.2104 0.2063 1.3008 0.8301 0.4456 -0.2115 -0.2602
1305031529.407513 -0.573170364 0.494490802 -0.336653709 -0.182107240 -0.230446473 -0.207627431 0.933071375 1305031529.412100 1.1956 0.1791 1.2997 0.8299 0.4472 -0.2081 -0.2607
1305031529.439502 -0.592521727 0.509317398 -0.348569959 -0.176561520 -0.225443274 -0.212392747 0.934286177 1305031529.442100 1.1843 0.1600 1.3000 0.8304 0.4464 -0.2028 -0.2645
1305031529.475403 -0.613592625 0.520123661 -0.360875040 -0.172136515 -0.218513519 -0.214253858 0.936331213 1305031529.472100 1.1729 0.1418 1.3008 0.8303 0.4460 -0.1983 -0.2690
1305031529.507485 -0.633599639 0.528568029 -0.369254827 -0.166303858 -0.213266820 -0.219033107 0.937488556 1305031529.512100 1.1577 0.1193 1.3029 0.8290 0.4453 -0.1917 -0.2788
1305031529.539489 -0.651074648 0.528935075 -0.378143847 -0.160415858 -0.206384078 -0.221350908 0.939508438 1305031529.542200 1.1462 0.1041 1.3046 0.8290 0.4417 -0.1865 -0.2879
1305031529.607479 -0.686017632 0.545031309 -0.394158632 -0.154660717 -0.191093341 -0.215704605 0.945005238 1305031529.612300 1.1179 0.0732 1.3064 0.8350 0.4311 -0.1765 -0.2927
1305031529.639746 -0.701905608 0.552717209 -0.398970723 -0.154912621 -0.184921563 -0.209788874 0.947520316 1305031529.642300 1.1057 0.0620 1.3067 0.8404 0.4225 -0.1734 -0.2919
1305031529.675618 -0.719306707 0.559796870 -0.401483953 -0.157197714 -0.176389754 -0.200863779 0.950699389 1305031529.672100 1.0934 0.0521 1.3067 0.8466 0.4127 -0.1705 -0.2897
1305031529.707557 -0.735418081 0.563297987 -0.403395295 -0.162735164 -0.169739127 -0.191895753 0.952828407 1305031529.712100 1.0772 0.0401 1.3062 0.8540 0.4020 -0.1668 -0.2851
1305031529.739568 -0.746963501 0.566777885 -0.403324068 -0.165786088 -0.164117917 -0.185986936 0.954457521 1305031529.742100 1.0645 0.0324 1.3057 0.8593 0.3933 -0.1610 -0.2845
1305031529.775501 -0.761871457 0.562885761 -0.403146863 -0.173444703 -0.152099952 -0.180582851 0.956123650 1305031529.772100 1.0519 0.0257 1.3054 0.8653 0.3833 -0.1532 -0.2845
1305031529.807516 -0.782125950 0.550134659 -0.398882180 -0.178626403 -0.136654928 -0.177510321 0.958075225 1305031529.812200 1.0347 0.0182 1.3067 0.8683 0.3721 -0.1418 -0.2957
1305031529.839505 -0.801752090 0.562361419 -0.403514504 -0.164821103 -0.120010868 -0.171232879 0.963903904 1305031529.842200 1.0205 0.0123 1.3077 0.8720 0.3619 -0.1364 -0.3002
1305031529.875495 -0.825005233 0.565140069 -0.403103828 -0.163723126 -0.107326634 -0.161056474 0.967334747 1305031529.872100 1.0056 0.0061 1.3092 0.8768 0.3496 -0.1342 -0.3015
1305031529.939498 -0.862981617 0.568239570 -0.402119935 -0.153819934 -0.099035807 -0.135157794 0.973788321 1305031529.942300 0.9664 -0.0101 1.3143 0.8831 0.3236 -0.1383 -0.3102
1305031529.975501 -0.880968273 0.572280824 -0.404322088 -0.150892213 -0.094667107 -0.124493204 0.976099968 1305031529.972100 0.9487 -0.0181 1.3172 0.8879 0.3138 -0.1360 -0.3078
1305031530.007409 -0.905366302 0.569447100 -0.406524211 -0.154951453 -0.086226285 -0.112701796 0.977677524 1305031530.012200 0.9251 -0.0287 1.3230 0.8943 0.2970 -0.1364 -0.3057
1305031530.039454 -0.928224921 0.566439390 -0.410196871 -0.157523975 -0.081151128 -0.098109439 0.979272783 1305031530.042100 0.9078 -0.0374 1.3294 0.8982 0.2858 -0.1387 -0.3039
1305031530.075443 -0.950253010 0.559827328 -0.416947931 -0.162434965 -0.077827856 -0.086941622 0.979795277 1305031530.072100 0.8912 -0.0468 1.3372 0.9025 0.2763 -0.1397 -0.2994
1305031530.107445 -0.969959199 0.551806927 -0.419147462 -0.166437954 -0.076426215 -0.074270479 0.980276167 1305031530.112100 0.8702 -0.0598 1.3504 0.9063 0.2617 -0.1441 -0.2991
1305031530.139497 -0.990334094 0.546676219 -0.427851111 -0.161496118 -0.075611651 -0.063429944 0.981925905 1305031530.142100 0.8549 -0.0694 1.3619 0.9068 0.2541 -0.1470 -0.3026
1305031530.175410 -1.011743307 0.532514870 -0.437951684 -0.163490430 -0.073183246 -0.057896268 0.982121706 1305031530.172100 0.8401 -0.0790 1.3745 0.9079 0.2497 -0.1467 -0.3031
1305031530.207486 -1.026106596 0.520563304 -0.442257732 -0.161179200 -0.074755140 -0.053572387 0.982630610 1305031530.212100 0.8207 -0.0918 1.3931 0.9064 0.2442 -0.1474 -0.3116
1305031530.239446 -1.046416879 0.508008480 -0.452970088 -0.153883174 -0.071162157 -0.053860974 0.984050274 1305031530.242100 0.8068 -0.1013 1.4078 0.9047 0.2421 -0.1449 -0.3193
1305031530.275407 -1.064027667 0.502663970 -0.465098500 -0.145707563 -0.066783614 -0.056310035 0.985463560 1305031530.272100 0.7934 -0.1110 1.4224 0.9035 0.2412 -0.1406 -0.3252
1305031530.307544 -1.084838510 0.495963782 -0.480404109 -0.138100356 -0.059795361 -0.058558144 0.986875772 1305031530.312100 0.7759 -0.1236 1.4419 0.9029 0.2375 -0.1349 -0.3319
1305031530.339724 -1.100072503 0.492883712 -0.494072199 -0.130769208 -0.053706903 -0.059014130 0.988196492 1305031530.342200 0.7628 -0.1330 1.4560 0.9028 0.2349 -0.1290 -0.3364
1305031530.375386 -1.120413184 0.486829787 -0.506913781 -0.130313993 -0.043995000 -0.061205465 0.988603354 1305031530.372100 0.7506 -0.1430 1.4696 0.9048 0.2337 -0.1209 -0.3349
1305031530.407465 -1.137735009 0.470962703 -0.514536798 -0.131977677 -0.037198730 -0.060183074 0.988724470 1305031530.412100 0.7341 -0.1559 1.4881 0.9045 0.2300 -0.1148 -0.3402
1305031530.439553 -1.155470848 0.461909473 -0.526750922 -0.126318991 -0.030234955 -0.060742665 0.989666462 1305031530.442100 0.7216 -0.1654 1.5023 0.9040 0.2261 -0.1088 -0.3460
1305031530.475439 -1.170725107 0.454504520 -0.538456917 -0.121499091 -0.024126580 -0.059113618 0.990535975 1305031530.472100 0.7099 -0.1754 1.5169 0.9044 0.2220 -0.1045 -0.3491
1305031530.507461 -1.180110931 0.439052403 -0.553038239 -0.118578292 -0.020405162 -0.056899898 0.991103053 1305031530.512100 0.6956 -0.1882 1.5374 0.9034 0.2144 -0.0975 -0.3584
1305031530.539532 -1.191027403 0.419814497 -0.562419176 -0.113885224 -0.011026874 -0.057769980 0.991751552 1305031530.542100 0.6854 -0.1978 1.5540 0.9010 0.2085 -0.0887 -0.3699
1305031530.575433 -1.200631261 0.397278607 -0.576177061 -0.101490840 0.001630238 -0.058040317 0.993140638 1305031530.572100 0.6760 -0.2074 1.5716 0.8966 0.2015 -0.0783 -0.3864
1305031530.607559 -1.212776303 0.389287174 -0.602888942 -0.081612900 0.019034607 -0.057921402 0.994797528 1305031530.612100 0.6643 -0.2208 1.5949 0.8921 0.1876 -0.0617 -0.4063
1305031530.639507 -1.220603108 0.378338605 -0.620145977 -0.066848807 0.038806383 -0.056910057 0.995382607 1305031530.642100 0.6556 -0.2316 1.6115 0.8889 0.1759 -0.0458 -0.4204
1305031530.675401 -1.233175039 0.370456308 -0.634583414 -0.049930591 0.064168848 -0.054673307 0.995188534 1305031530.672200 0.6472 -0.2436 1.6277 0.8852 0.1621 -0.0275 -0.4352
1305031530.739522 -1.261493683 0.360025346 -0.682886183 -0.012161122 0.119721055 -0.044118252 0.991752267 1305031530.742100 0.6260 -0.2744 1.6604 0.8736 0.1215 0.0135 -0.4710
1305031530.775437 -1.286842823 0.352220833 -0.699633360 -0.001169587 0.149443701 -0.036229160 0.988105595 1305031530.772100 0.6156 -0.2883 1.6720 0.8700 0.1022 0.0301 -0.4814
1305031530.807467 -1.315137267 0.367161959 -0.714146852 0.014115841 0.176487401 -0.025651047 0.983867347 1305031530.812100 0.6001 -0.3069 1.6845 0.8661 0.0784 0.0482 -0.4914
1305031530.839463 -1.334642172 0.385298789 -0.735829711 0.022136053 0.194981277 -0.011893014 0.980485022 1305031530.842100 0.5870 -0.3201 1.6912 0.8668 0.0628 0.0582 -0.4912
1305031530.875401 -1.369665146 0.392395049 -0.718994856 0.019827759 0.211101934 -0.004093302 0.977254331 1305031530.872100 0.5719 -0.3328 1.6958 0.8698 0.0507 0.0631 -0.4868
1305031530.939462 -1.440359116 0.392066211 -0.715514898 0.027499944 0.218641758 0.006692985 0.975394666 1305031530.942100 0.5290 -0.3562 1.6990 0.8668 0.0445 0.0556 -0.4936
1305031530.975286 -1.467925072 0.411824465 -0.707297087 0.030095484 0.210740373 0.005826227 0.977061331 1305031530.974200 0.5080 -0.3634 1.6957 0.8682 0.0497 0.0473 -0.4914
1305031531.039689 -1.532592058 0.420356303 -0.690787911 0.015797708 0.180459052 0.009155454 0.983412981 1305031531.042100 0.4557 -0.3746 1.6807 0.8766 0.0616 0.0159 -0.4771
1305031531.075325 -1.562474847 0.429022819 -0.690205455 0.005178453 0.163495257 0.011896124 0.986458778 1305031531.072100 0.4319 -0.3776 1.6714 0.8823 0.0681 0.0025 -0.4658
1305031531.139581 -1.601380587 0.422103971 -0.659301877 -0.019878304 0.124184996 0.021121128 0.991835117 1305031531.142100 0.3745 -0.3826 1.6474 0.8923 0.0813 -0.0349 -0.4426
1305031531.175355 -1.639283180 0.431639075 -0.641484380 -0.024015591 0.109652370 0.022073412 0.993434608 1305031531.172100 0.3490 -0.3829 1.6359 0.8932 0.0860 -0.0489 -0.4386
1305031531.239619 -1.697065711 0.448480546 -0.603893578 -0.037680656 0.077034988 0.029067826 0.995891988 1305031531.242100 0.2877 -0.3830 1.6082 0.8992 0.0983 -0.0832 -0.4182
1305031531.275515 -1.703558922 0.446289897 -0.581166387 -0.042331036 0.054736137 0.030868566 0.997125447 1305031531.272100 0.2621 -0.3813 1.5969 0.8975 0.1012 -0.0962 -0.4183
1305031531.339595 -1.733692527 0.463021219 -0.532173812 -0.038276989 0.032155998 0.032915492 0.998207092 1305031531.342100 0.2030 -0.3764 1.5716 0.8963 0.1053 -0.1118 -0.4160
1305031531.375434 -1.745871305 0.456259906 -0.526792645 -0.041909553 0.028999120 0.034955364 0.998088539 1305031531.372200 0.1790 -0.3732 1.5615 0.8962 0.1038 -0.1101 -0.4170
1305031531.439644 -1.779512048 0.465197712 -0.493550062 -0.036073327 0.041923068 0.037195776 0.997776330 1305031531.442100 0.1265 -0.3619 1.5401 0.8965 0.0914 -0.0964 -0.4227
1305031531.475324 -1.798225164 0.454130113 -0.473303884 -0.036804512 0.051448308 0.042760260 0.997080803 1305031531.472100 0.1047 -0.3559 1.5326 0.8958 0.0842 -0.0917 -0.4266
1305031531.507602 -1.822675109 0.462594450 -0.457025111 -0.029646453 0.061003584 0.044361576 0.996710420 1305031531.512100 0.0756 -0.3470 1.5235 0.8957 0.0774 -0.0856 -0.4294
1305031531.539487 -1.842242837 0.456204623 -0.437320828 -0.031237461 0.066190429 0.049604204 0.996083558 1305031531.542100 0.0542 -0.3398 1.5177 0.8963 0.0722 -0.0840 -0.4294
1305031531.575392 -1.859240055 0.452193916 -0.418387532 -0.029357912 0.069689915 0.056401949 0.995540142 1305031531.572100 0.0328 -0.3328 1.5125 0.8961 0.0639 -0.0842 -0.4312
1305031531.607419 -1.883657813 0.457863688 -0.402540445 -0.025465036 0.077164032 0.058375940 0.994982183 1305031531.612100 0.0044 -0.3251 1.5060 0.8970 0.0566 -0.0794 -0.4312
1305031531.639521 -1.899605870 0.452908516 -0.387782335 -0.027194945 0.083178692 0.061760947 0.994247079 1305031531.642100 -0.0167 -0.3202 1.5017 0.8977 0.0508 -0.0749 -0.4312
1305031531.675444 -1.919689298 0.445739567 -0.371033162 -0.025581570 0.090562560 0.067330092 0.993282795 1305031531.672100 -0.0377 -0.3154 1.4979 0.8966 0.0453 -0.0712 -0.4348
1305031531.707498 -1.942379117 0.446997017 -0.358369708 -0.022856202 0.095322154 0.067656010 0.992881656 1305031531.712100 -0.0664 -0.3098 1.4926 0.8962 0.0430 -0.0674 -0.4364
1305031531.739657 -1.959185481 0.443148822 -0.342861593 -0.023469506 0.098902434 0.065572299 0.992656887 1305031531.742100 -0.0882 -0.3062 1.4889 0.8957 0.0423 -0.0624 -0.4382
1305031531.775442 -1.979072928 0.441148520 -0.330076396 -0.019746941 0.104963057 0.062876657 0.992289960 1305031531.772100 -0.1091 -0.3032 1.4854 0.8948 0.0409 -0.0569 -0.4410
1305031531.839545 -2.031389952 0.447761118 -0.309799880 -0.013570230 0.114844196 0.061703201 0.991372466 1305031531.842100 -0.1569 -0.2970 1.4755 0.8942 0.0384 -0.0516 -0.4430
1305031531.875426 -2.051207066 0.454951376 -0.297199756 -0.021668158 0.116940536 0.061709389 0.990983009 1305031531.872100 -0.1768 -0.2953 1.4701 0.8993 0.0370 -0.0487 -0.4330
1305031531.907427 -2.065320730 0.452592254 -0.285301477 -0.031805091 0.119541608 0.064228982 0.990238786 1305031531.912100 -0.2021 -0.2925 1.4623 0.9031 0.0329 -0.0445 -0.4258
1305031531.939564 -2.087300062 0.462161213 -0.274148226 -0.037705932 0.127705678 0.065471835 0.988930225 1305031531.942100 -0.2198 -0.2907 1.4559 0.9078 0.0281 -0.0386 -0.4166
1305031531.975488 -2.093064547 0.461891323 -0.259108394 -0.048334002 0.131502032 0.071743190 0.987534285 1305031531.972000 -0.2371 -0.2894 1.4489 0.9117 0.0222 -0.0332 -0.4090
1305031532.039675 -2.138504982 0.468977809 -0.237405121 -0.068548255 0.151021704 0.087101094 0.982296765 1305031532.042100 -0.2758 -0.2854 1.4292 0.9220 0.0000 -0.0229 -0.3865
1305031532.075525 -2.154035091 0.475413442 -0.224113107 -0.081441589 0.158602655 0.097342521 0.979151130 1305031532.072100 -0.2923 -0.2829 1.4194 0.9268 -0.0119 -0.0189 -0.3748
1305031532.107398 -2.170846462 0.476327538 -0.211347252 -0.096188217 0.167010888 0.114576295 0.974539578 1305031532.112100 -0.3142 -0.2804 1.4061 0.9340 -0.0326 -0.0163 -0.3555
1305031532.139520 -2.183909655 0.482602686 -0.195677429 -0.106095791 0.173370019 0.133438647 0.969990015 1305031532.142100 -0.3306 -0.2779 1.3964 0.9371 -0.0498 -0.0170 -0.3452
1305031532.175563 -2.204168081 0.487305760 -0.182892680 -0.115662292 0.180792108 0.152461916 0.964723706 1305031532.172100 -0.3470 -0.2759 1.3859 0.9402 -0.0665 -0.0181 -0.3336
1305031532.207465 -2.218504429 0.490628541 -0.167850137 -0.125417709 0.186160758 0.172982588 0.959005535 1305031532.212100 -0.3700 -0.2733 1.3727 0.9427 -0.0910 -0.0207 -0.3202
1305031532.239966 -2.232538939 0.485460877 -0.154788435 -0.135157928 0.190700769 0.194355324 0.952675998 1305031532.242100 -0.3882 -0.2719 1.3635 0.9441 -0.1075 -0.0227 -0.3108
1305031532.275514 -2.249806881 0.494778156 -0.138956249 -0.140495762 0.196945250 0.208807215 0.947561681 1305031532.272100 -0.4065 -0.2695 1.3546 0.9452 -0.1237 -0.0218 -0.3015
1305031532.307481 -2.270475149 0.491068125 -0.125185370 -0.150628984 0.205311298 0.226947188 0.940028250 1305031532.312100 -0.4318 -0.2643 1.3440 0.9463 -0.1444 -0.0210 -0.2884
1305031532.339777 -2.298396587 0.483481675 -0.119883269 -0.160714403 0.210132763 0.245520025 0.932595849 1305031532.342100 -0.4514 -0.2600 1.3378 0.9480 -0.1576 -0.0267 -0.2752
1305031532.375496 -2.308708191 0.483014703 -0.102232724 -0.170642778 0.204762936 0.261436999 0.927687407 1305031532.372100 -0.4712 -0.2549 1.3327 0.9493 -0.1668 -0.0334 -0.2645
1305031532.407448 -2.321734905 0.485834032 -0.082304329 -0.173469499 0.199078232 0.272692949 0.925156593 1305031532.412100 -0.4976 -0.2460 1.3290 0.9491 -0.1738 -0.0400 -0.2595
1305031532.439533 -2.312674999 0.493773341 -0.052393615 -0.164424136 0.192252085 0.276291192 0.927182317 1305031532.442100 -0.5166 -0.2382 1.3287 0.9462 -0.1736 -0.0405 -0.2699
1305031532.475428 -2.326466560 0.491763413 -0.038195968 -0.146774530 0.193966687 0.269313127 0.931828618 1305031532.472100 -0.5350 -0.2292 1.3290 0.9418 -0.1731 -0.0379 -0.2858
1305031532.507415 -2.337444067 0.476558536 -0.021644324 -0.135551944 0.197096482 0.271520108 0.932231426 1305031532.512100 -0.5582 -0.2167 1.3297 0.9370 -0.1761 -0.0373 -0.2995
1305031532.539458 -2.354415417 0.468815923 -0.009330034 -0.119453430 0.199560761 0.270655215 0.934158504 1305031532.542200 -0.5747 -0.2059 1.3301 0.9321 -0.1779 -0.0378 -0.3132
1305031532.575435 -2.356000185 0.463053286 0.010164797 -0.104051962 0.198285818 0.270546138 0.936301589 1305031532.572100 -0.5905 -0.1945 1.3305 0.9277 -0.1811 -0.0379 -0.3243
1305031532.607434 -2.375977993 0.448595047 0.024759412 -0.101074167 0.207025707 0.272525936 0.934159517 1305031532.612100 -0.6096 -0.1787 1.3297 0.9254 -0.1900 -0.0337 -0.3263
1305031532.639592 -2.378012896 0.452039748 0.046087086 -0.096321635 0.216378912 0.272717237 0.932484686 1305031532.642100 -0.6219 -0.1663 1.3290 0.9230 -0.2000 -0.0244 -0.3279
1305031532.707308 -2.405913591 0.421957314 0.065707028 -0.102902457 0.248862371 0.286105812 0.919577122 1305031532.712100 -0.6458 -0.1376 1.3257 0.9206 -0.2273 -0.0038 -0.3176
1305031532.740052 -2.404225826 0.415780902 0.081942737 -0.112762004 0.256119311 0.296936125 0.912971258 1305031532.742100 -0.6544 -0.1253 1.3239 0.9215 -0.2376 0.0007 -0.3071
1305031532.775761 -2.405336142 0.406422228 0.098615646 -0.117217809 0.264744252 0.308573484 0.906064510 1305031532.772100 -0.6620 -0.1131 1.3221 0.9206 -0.2469 0.0048 -0.3025
1305031532.807429 -2.401256800 0.405207753 0.114581287 -0.113917835 0.271649241 0.311569601 0.903412342 1305031532.812100 -0.6703 -0.0970 1.3205 0.9174 -0.2566 0.0136 -0.3040
1305031532.839717 -2.404197931 0.401611626 0.128565013 -0.111438639 0.285279453 0.313981265 0.898672819 1305031532.842100 -0.6747 -0.0851 1.3192 0.9145 -0.2681 0.0222 -0.3023
1305031532.875476 -2.404158115 0.396329761 0.139863133 -0.109073058 0.300081581 0.320100188 0.891958475 1305031532.872100 -0.6779 -0.0731 1.3178 0.9105 -0.2801 0.0324 -0.3025
1305031532.907577 -2.404700279 0.384561151 0.149034858 -0.109283403 0.312692255 0.331081420 0.883552969 1305031532.912100 -0.6814 -0.0576 1.3156 0.9061 -0.2976 0.0401 -0.2981
1305031532.939523 -2.396136284 0.377146363 0.163070798 -0.105089337 0.320458293 0.347403884 0.874970436 1305031532.942100 -0.6824 -0.0456 1.3140 0.8998 -0.3121 0.0415 -0.3022
1305031532.975424 -2.389782906 0.373017102 0.174210250 -0.096274994 0.327154636 0.359121144 0.868753672 1305031532.972100 -0.6835 -0.0339 1.3128 0.8943 -0.3261 0.0416 -0.3034
1305031533.007402 -2.385313511 0.369636059 0.183168054 -0.087607786 0.334404796 0.370132059 0.862264812 1305031533.012100 -0.6841 -0.0187 1.3113 0.8856 -0.3452 0.0444 -0.3076
1305031533.039505 -2.384852648 0.363770932 0.193482935 -0.078389786 0.344901085 0.378401875 0.855400681 1305031533.042100 -0.6843 -0.0077 1.3105 0.8775 -0.3601 0.0481 -0.3131
1305031533.075500 -2.390422821 0.358458579 0.201107919 -0.075769223 0.356961578 0.385053575 0.847685814 1305031533.072100 -0.6849 0.0024 1.3101 0.8726 -0.3753 0.0521 -0.3082
1305031533.107480 -2.385401726 0.354564846 0.210260272 -0.075533710 0.367279410 0.397776663 0.837361455 1305031533.112100 -0.6867 0.0137 1.3120 0.8662 -0.3930 0.0600 -0.3027
1305031533.139514 -2.372012615 0.350669831 0.212894857 -0.068521887 0.374805063 0.406299293 0.830509961 1305031533.142800 -0.6884 0.0209 1.3165 0.8596 -0.4018 0.0676 -0.3085
1305031533.175459 -2.377696514 0.333864450 0.215952337 -0.065009937 0.388197184 0.408438295 0.823562264 1305031533.172100 -0.6903 0.0276 1.3219 0.8548 -0.4080 0.0756 -0.3116
1305031533.207507 -2.385103226 0.325788766 0.217759430 -0.066561528 0.398282826 0.409474522 0.818089783 1305031533.212100 -0.6935 0.0346 1.3304 0.8520 -0.4174 0.0840 -0.3047
1305031533.239511 -2.376122475 0.316433787 0.215501904 -0.067036957 0.404730767 0.414873511 0.812144697 1305031533.242100 -0.6962 0.0385 1.3397 0.8477 -0.4226 0.0931 -0.3068
1305031533.275405 -2.378651381 0.301562667 0.210795879 -0.062826820 0.414004087 0.415971458 0.807230532 1305031533.272100 -0.6992 0.0412 1.3504 0.8439 -0.4262 0.0991 -0.3103
1305031533.307502 -2.378507137 0.290278614 0.203924775 -0.059505433 0.418073028 0.418126583 0.804266214 1305031533.312100 -0.7042 0.0435 1.3665 0.8388 -0.4319 0.1059 -0.3140
1305031533.339522 -2.383118629 0.276216388 0.197004974 -0.052702114 0.427105308 0.417102575 0.800517917 1305031533.342200 -0.7084 0.0443 1.3802 0.8334 -0.4358 0.1135 -0.3203
1305031533.375654 -2.389847040 0.259841800 0.191461027 -0.043600217 0.436674982 0.417547673 0.795655668 1305031533.372100 -0.7132 0.0454 1.3941 0.8280 -0.4400 0.1189 -0.3267
1305031533.407483 -2.399025917 0.243333876 0.190472424 -0.034539811 0.443461597 0.417135537 0.792557120 1305031533.412100 -0.7208 0.0479 1.4122 0.8232 -0.4426 0.1199 -0.3347
1305031533.439774 -2.405803442 0.218966901 0.184065044 -0.030534860 0.443719029 0.421467364 0.790282428 1305031533.442100 -0.7267 0.0503 1.4251 0.8186 -0.4462 0.1192 -0.3415
1305031533.475654 -2.414663076 0.213283241 0.182140827 -0.017157676 0.446590602 0.421785623 0.788897574 1305031533.472100 -0.7330 0.0521 1.4375 0.8131 -0.4513 0.1187 -0.3480
1305031533.507463 -2.427252293 0.201290309 0.180907130 -0.010102161 0.450482249 0.423938572 0.785646081 1305031533.512000 -0.7418 0.0550 1.4525 0.8066 -0.4594 0.1185 -0.3525
1305031533.539640 -2.430620909 0.187578976 0.176244736 -0.001676425 0.453472286 0.429042488 0.781205893 1305031533.542100 -0.7482 0.0570 1.4631 0.7996 -0.4653 0.1208 -0.3598
1305031533.575643 -2.440914631 0.187283993 0.175111234 0.010996390 0.459485590 0.427886397 0.778245032 1305031533.572100 -0.7547 0.0595 1.4725 0.7938 -0.4711 0.1242 -0.3641
1305031533.607639 -2.445695400 0.186571300 0.166759789 0.017729463 0.465337425 0.430729181 0.773058355 1305031533.612100 -0.7633 0.0624 1.4833 0.7856 -0.4820 0.1337 -0.3643
1305031533.639561 -2.457445145 0.168652773 0.174272835 0.018688479 0.478676170 0.434703529 0.762596071 1305031533.642000 -0.7698 0.0651 1.4902 0.7802 -0.4896 0.1386 -0.3639
1305031533.675446 -2.467365265 0.175865710 0.174820364 0.023927663 0.483153671 0.436838537 0.758394361 1305031533.672100 -0.7764 0.0688 1.4956 0.7762 -0.4982 0.1420 -0.3594
1305031533.707501 -2.468612432 0.172062576 0.169309556 0.020866981 0.488988280 0.442800790 0.751253903 1305031533.712100 -0.7857 0.0749 1.5013 0.7703 -0.5091 0.1544 -0.3515
1305031533.739555 -2.470218182 0.165642560 0.164204478 0.017631054 0.499439180 0.446189016 0.742404878 1305031533.742000 -0.7930 0.0804 1.5052 0.7650 -0.5156 0.1674 -0.3476
1305031533.775530 -2.485262871 0.153400719 0.184181690 0.015735591 0.517516196 0.445763946 0.730221808 1305031533.772000 -0.8006 0.0873 1.5078 0.7602 -0.5230 0.1759 -0.3430
1305031533.807707 -2.487299919 0.127788723 0.197456419 0.007843481 0.527166367 0.453643650 0.718499482 1305031533.812100 -0.8118 0.0982 1.5101 0.7553 -0.5301 0.1816 -0.3400
1305031533.839329 -2.481762886 0.090185523 0.233735442 0.006157675 0.536392212 0.455373734 0.710549235 1305031533.842100 -0.8203 0.1087 1.5118 0.7537 -0.5263 0.1763 -0.3520
1305031533.875471 -2.494186640 0.082776368 0.266642749 0.021276966 0.529272377 0.450978696 0.718356609 1305031533.872100 -0.8296 0.1207 1.5127 0.7565 -0.5205 0.1576 -0.3634
1305031533.907441 -2.491076469 0.041283607 0.271202564 0.024903500 0.507038534 0.458702445 0.729303658 1305031533.912100 -0.8425 0.1386 1.5142 0.7615 -0.5053 0.1330 -0.3835
1305031533.939530 -2.516552925 0.047504127 0.238348961 0.047065847 0.468792588 0.452090979 0.757385015 1305031533.942100 -0.8518 0.1528 1.5154 0.7656 -0.4924 0.1110 -0.3989
1305031533.975439 -2.518206120 0.035504162 0.245734572 0.058757532 0.442226231 0.449354142 0.773992479 1305031533.972100 -0.8613 0.1674 1.5166 0.7701 -0.4781 0.0919 -0.4122
1305031534.007323 -2.522070408 0.030651838 0.269739866 0.074379072 0.424867719 0.434714079 0.790556014 1305031534.012100 -0.8731 0.1861 1.5196 0.7745 -0.4534 0.0747 -0.4347
1305031534.039458 -2.525323868 0.031153053 0.294346213 0.093646266 0.411472708 0.416421056 0.805303693 1305031534.042400 -0.8812 0.1993 1.5223 0.7740 -0.4384 0.0651 -0.4521
1305031534.075484 -2.527844429 0.005879700 0.290710688 0.102568306 0.395681024 0.410351425 0.815185845 1305031534.072000 -0.8891 0.2116 1.5251 0.7735 -0.4274 0.0564 -0.4646
1305031534.107442 -2.509663582 -0.000164211 0.297157168 0.118322596 0.380633146 0.401970237 0.824340999 1305031534.112100 -0.8978 0.2268 1.5302 0.7687 -0.4106 0.0518 -0.4877
1305031534.139529 -2.515332699 -0.004984342 0.305678964 0.136906967 0.381094605 0.380838871 0.831255198 1305031534.142100 -0.9036 0.2372 1.5342 -0.7630 0.4019 -0.0578 0.5029
1305031534.175381 -2.519822121 -0.016826987 0.313684344 0.145301342 0.387428135 0.369678199 0.831940532 1305031534.172100 -0.9080 0.2469 1.5384 -0.7603 0.3966 -0.0641 0.5105
1305031534.207436 -2.514250755 -0.026365928 0.318906784 0.157322481 0.387293041 0.360694915 0.833758295 1305031534.212100 -0.9128 0.2595 1.5444 -0.7544 0.3870 -0.0689 0.5257
1305031534.239529 -2.539515495 -0.046969280 0.332203507 0.164375901 0.394717157 0.346872985 0.834780276 1305031534.242100 -0.9154 0.2686 1.5487 -0.7534 0.3819 -0.0694 0.5307
1305031534.275475 -2.539156914 -0.059264474 0.338053226 0.165088028 0.390646636 0.344265968 0.837628841 1305031534.272200 -0.9168 0.2777 1.5525 -0.7542 0.3771 -0.0664 0.5335
1305031534.307945 -2.530802250 -0.060429852 0.341664553 0.169979781 0.384970367 0.340386689 0.840857625 1305031534.312000 -0.9169 0.2883 1.5574 -0.7534 0.3733 -0.0633 0.5377
1305031534.339859 -2.521246910 -0.069512054 0.339248180 0.172835022 0.384264350 0.336919159 0.841994345 1305031534.342000 -0.9162 0.2956 1.5612 -0.7514 0.3700 -0.0670 0.5422
1305031534.375478 -2.510234356 -0.074497841 0.341840625 0.178481773 0.385017306 0.330248743 0.843114257 1305031534.372100 -0.9148 0.3024 1.5648 -0.7494 0.3659 -0.0706 0.5473
1305031534.407595 -2.502387524 -0.073711179 0.350775838 0.185380980 0.390234888 0.322641522 0.842171669 1305031534.412000 -0.9117 0.3105 1.5689 -0.7452 0.3631 -0.0789 0.5537
1305031534.439543 -2.497386456 -0.093112804 0.348100901 0.188917145 0.394708693 0.317403704 0.841290832 1305031534.442100 -0.9096 0.3159 1.5720 -0.7398 0.3600 -0.0843 0.5621
1305031534.475605 -2.508030891 -0.096727684 0.349948883 0.202409476 0.397034079 0.307588607 0.840704203 1305031534.472000 -0.9073 0.3211 1.5747 -0.7346 0.3534 -0.0858 0.5728
1305031534.507525 -2.513030767 -0.098866895 0.358188152 0.208240017 0.396031886 0.303713262 0.841161728 1305031534.512100 -0.9039 0.3280 1.5767 -0.7328 0.3496 -0.0824 0.5779
1305031534.539582 -2.507566452 -0.104811817 0.352421045 0.211017177 0.389043182 0.303856760 0.843675435 1305031534.542100 -0.9013 0.3327 1.5776 -0.7320 0.3461 -0.0775 0.5817
1305031534.575414 -2.503450871 -0.112628430 0.353872776 0.218233496 0.382777303 0.299629837 0.846213698 1305031534.572200 -0.8988 0.3367 1.5782 -0.7293 0.3405 -0.0729 0.5890
1305031534.607494 -2.506536484 -0.110696495 0.363127470 0.225588515 0.377713889 0.294075668 0.848505497 1305031534.612100 -0.8952 0.3420 1.5776 -0.7279 0.3328 -0.0662 0.5959
1305031534.639696 -2.503484249 -0.108837724 0.372636080 0.227866113 0.369029462 0.290562332 0.852917254 1305031534.642100 -0.8925 0.3455 1.5760 -0.7301 0.3265 -0.0575 0.5975
1305031534.675511 -2.492532253 -0.103188008 0.370034814 0.228385061 0.357260853 0.289308667 0.858198941 1305031534.672100 -0.8896 0.3487 1.5737 -0.7319 0.3222 -0.0500 0.5983
1305031534.707481 -2.485138655 -0.102599353 0.372555852 0.230306551 0.351113051 0.289501607 0.860155404 1305031534.712000 -0.8854 0.3517 1.5702 -0.7313 0.3182 -0.0450 0.6016
1305031534.739665 -2.484596968 -0.100126177 0.377577662 0.233117744 0.348080009 0.284176469 0.862403750 1305031534.742000 -0.8826 0.3538 1.5675 -0.7310 0.3134 -0.0426 0.6047
1305031534.775491 -2.476128578 -0.096007377 0.378718615 0.231849805 0.344296396 0.279460281 0.865798831 1305031534.772000 -0.8801 0.3553 1.5645 -0.7341 0.3082 -0.0419 0.6036
1305031534.807516 -2.479419231 -0.098456800 0.382138669 0.232955262 0.342128605 0.276722431 0.867239594 1305031534.812300 -0.8764 0.3566 1.5610 -0.7339 0.3027 -0.0386 0.6068
1305031534.839569 -2.474008083 -0.098384172 0.383742988 0.235601291 0.336164504 0.274177164 0.869662166 1305031534.842100 -0.8743 0.3574 1.5589 -0.7327 0.2983 -0.0349 0.6107
1305031534.875499 -2.473700047 -0.100941092 0.379047692 0.239664942 0.330350608 0.268484533 0.872551024 1305031534.872000 -0.8728 0.3572 1.5574 -0.7320 0.2897 -0.0326 0.6157
1305031534.907458 -2.462567806 -0.077032477 0.388846576 0.247359633 0.325489283 0.253998041 0.876558602 1305031534.912000 -0.8710 0.3558 1.5555 -0.7320 0.2792 -0.0331 0.6206
1305031534.939556 -2.444954872 -0.074731708 0.383425176 0.244691864 0.329881698 0.248058364 0.877365947 1305031534.942100 -0.8701 0.3537 1.5544 -0.7316 0.2799 -0.0423 0.6202
1305031534.975464 -2.447574615 -0.087634981 0.377884507 0.245689943 0.341680646 0.243470728 0.873849452 1305031534.972200 -0.8699 0.3510 1.5542 -0.7275 0.2783 -0.0543 0.6248
1305031535.007643 -2.474707127 -0.098219663 0.378050506 0.249143511 0.350633234 0.234108135 0.871881425 1305031535.012000 -0.8709 0.3475 1.5543 -0.7234 0.2704 -0.0612 0.6324
1305031535.039655 -2.484711170 -0.094033569 0.383744895 0.254823238 0.347021520 0.226451635 0.873705268 1305031535.042100 -0.8721 0.3453 1.5544 -0.7221 0.2627 -0.0581 0.6373
1305031535.075490 -2.490309954 -0.077922344 0.386527240 0.256838411 0.339778155 0.221851140 0.877135634 1305031535.072100 -0.8732 0.3428 1.5536 -0.7252 0.2586 -0.0519 0.6360
1305031535.107796 -2.485105991 -0.084084183 0.381587386 0.256481826 0.335341483 0.227349862 0.877539277 1305031535.112100 -0.8736 0.3394 1.5537 -0.7236 0.2612 -0.0464 0.6372
1305031535.139465 -2.497114182 -0.080506861 0.386673331 0.259268075 0.331557512 0.228868634 0.877763569 1305031535.142100 -0.8746 0.3371 1.5537 -0.7235 0.2602 -0.0402 0.6381
1305031535.175406 -2.501357555 -0.084850401 0.380560577 0.256629437 0.320304066 0.230998740 0.882148623 1305031535.172000 -0.8757 0.3354 1.5538 -0.7265 0.2560 -0.0304 0.6369
1305031535.207514 -2.507165194 -0.076083064 0.395516157 0.257784516 0.308903843 0.229287982 0.886314034 1305031535.212100 -0.8779 0.3336 1.5540 -0.7317 0.2473 -0.0151 0.6351
1305031535.239511 -2.508190155 -0.083123326 0.381128371 0.252210677 0.294475734 0.230380237 0.892523825 1305031535.242000 -0.8796 0.3321 1.5543 -0.7350 0.2420 -0.0048 0.6335
1305031535.275537 -2.516230106 -0.091590047 0.374587357 0.249598593 0.283212036 0.231147692 0.896695197 1305031535.272100 -0.8813 0.3308 1.5548 -0.7366 0.2353 0.0053 0.6341
1305031535.307409 -2.513985872 -0.082861155 0.379425824 0.250247926 0.273793936 0.227888137 0.900266588 1305031535.312300 -0.8841 0.3284 1.5556 -0.7407 0.2274 0.0132 0.6321
1305031535.339468 -2.524769545 -0.096819907 0.364471257 0.245024681 0.266267389 0.227461323 0.904060841 1305031535.342000 -0.8865 0.3275 1.5563 -0.7418 0.2211 0.0189 0.6328
1305031535.375492 -2.508066654 -0.082167417 0.359986424 0.246013567 0.249888271 0.221310064 0.909975290 1305031535.372100 -0.8893 0.3264 1.5569 -0.7440 0.2117 0.0257 0.6333
1305031535.407712 -2.517795324 -0.087612152 0.358654797 0.243952572 0.244042814 0.217630327 0.912999094 1305031535.412000 -0.8931 0.3249 1.5580 -0.7475 0.2011 0.0310 0.6324
1305031535.439618 -2.517380238 -0.096719265 0.355501175 0.243272588 0.236081496 0.210878551 0.916850150 1305031535.442000 -0.8960 0.3239 1.5594 -0.7471 0.1911 0.0342 0.6357
1305031535.475595 -2.525013685 -0.121901900 0.358514369 0.240847513 0.232937336 0.200196058 0.920681357 1305031535.472100 -0.8990 0.3226 1.5615 -0.7463 0.1806 0.0362 0.6397
1305031535.507701 -2.527513027 -0.124854833 0.357313931 0.244569555 0.226931259 0.189113230 0.923538923 1305031535.512100 -0.9027 0.3202 1.5643 -0.7440 0.1659 0.0382 0.6462
1305031535.539515 -2.520640612 -0.117849320 0.355810046 0.250930548 0.220957011 0.177413553 0.925600469 1305031535.542000 -0.9052 0.3181 1.5664 -0.7405 0.1583 0.0376 0.6520
1305031535.575567 -2.521627426 -0.089750081 0.359997869 0.259528279 0.218902469 0.166549876 0.925736427 1305031535.572000 -0.9072 0.3161 1.5679 -0.7389 0.1520 0.0347 0.6555
1305031535.607524 -2.521935701 -0.084334582 0.361283183 0.256003499 0.219986618 0.161618426 0.927333593 1305031535.612100 -0.9090 0.3135 1.5681 -0.7430 0.1482 0.0303 0.6519
1305031535.639591 -2.525519133 -0.099532008 0.353511870 0.251005739 0.222428545 0.160986692 0.928226769 1305031535.642000 -0.9097 0.3112 1.5676 -0.7432 0.1459 0.0275 0.6523
1305031535.675500 -2.542366505 -0.070390671 0.364920378 0.254445463 0.224898025 0.156065360 0.927535415 1305031535.672000 -0.9099 0.3089 1.5660 -0.7457 0.1432 0.0276 0.6502
1305031535.707524 -2.533196688 -0.048950613 0.371234953 0.250741303 0.222163916 0.156319827 0.929158807 1305031535.712000 -0.9081 0.3065 1.5623 -0.7524 0.1450 0.0283 0.6419
1305031535.739708 -2.530488491 -0.059681207 0.362928569 0.240583122 0.221819267 0.162231907 0.930911779 1305031535.742000 -0.9060 0.3048 1.5588 -0.7553 0.1465 0.0288 0.6381
1305031535.775437 -2.528300285 -0.037037700 0.369252861 0.237273470 0.222667381 0.160663545 0.931830287 1305031535.772000 -0.9031 0.3027 1.5547 -0.7598 0.1478 0.0286 0.6325
1305031535.807496 -2.517880917 -0.035337478 0.366395891 0.228114337 0.223776191 0.167054370 0.932727635 1305031535.812100 -0.8979 0.2995 1.5487 -0.7657 0.1542 0.0275 0.6239
1305031535.840053 -2.521924973 -0.046104938 0.363354206 0.221608341 0.226980209 0.175988719 0.931878567 1305031535.842500 -0.8937 0.2964 1.5445 -0.7672 0.1589 0.0294 0.6207
1305031535.875502 -2.515576601 -0.027287364 0.361423910 0.218410507 0.225674495 0.181430027 0.931907177 1305031535.872000 -0.8893 0.2932 1.5399 -0.7710 0.1638 0.0315 0.6147
1305031535.907487 -2.495431900 -0.019688636 0.353645921 0.213503569 0.224690199 0.186321914 0.932316840 1305031535.912000 -0.8829 0.2878 1.5340 -0.7731 0.1722 0.0300 0.6097
1305031535.939747 -2.487156868 -0.000033617 0.354630709 0.211016029 0.230299488 0.191574737 0.930447996 1305031535.942000 -0.8775 0.2837 1.5292 -0.7759 0.1803 0.0262 0.6040
1305031535.975512 -2.493300438 0.007675409 0.364467442 0.203401506 0.241621360 0.198539510 0.927808702 1305031535.972000 -0.8721 0.2797 1.5238 -0.7807 0.1876 0.0217 0.5957
1305031536.007462 -2.474011421 0.037692726 0.345635176 0.194809034 0.240943596 0.208358616 0.927675724 1305031536.012100 -0.8648 0.2743 1.5159 -0.7881 0.1990 0.0172 0.5822
1305031536.039667 -2.467852116 0.045596078 0.345744848 0.183056936 0.248081028 0.217668235 0.926048875 1305031536.042000 -0.8593 0.2696 1.5097 -0.7932 0.2087 0.0138 0.5720
1305031536.075538 -2.463827133 0.058868378 0.344537437 0.172938868 0.255004585 0.228067219 0.923607171 1305031536.072100 -0.8538 0.2646 1.5034 -0.7982 0.2185 0.0102 0.5613
1305031536.107579 -2.464352846 0.065723002 0.339826465 0.157930434 0.263877481 0.238714099 0.921109200 1305031536.112000 -0.8464 0.2572 1.4948 -0.8058 0.2333 0.0053 0.5443
1305031536.139540 -2.447302103 0.079109594 0.338419259 0.147143051 0.270921320 0.251267642 0.917504847 1305031536.142000 -0.8409 0.2513 1.4888 -0.8092 0.2469 0.0001 0.5331
1305031536.175699 -2.445563793 0.085700475 0.330733180 0.135411739 0.281893373 0.265629113 0.911943495 1305031536.172000 -0.8352 0.2451 1.4829 -0.8122 0.2614 -0.0059 0.5215
1305031536.207474 -2.441941738 0.095868863 0.320971668 0.124354601 0.293078780 0.279410154 0.905853629 1305031536.212000 -0.8278 0.2360 1.4754 -0.8151 0.2816 -0.0150 0.5060
1305031536.239482 -2.437371016 0.108465016 0.324892282 0.113946706 0.307447881 0.293251157 0.898051083 1305031536.242000 -0.8223 0.2290 1.4702 0.8167 -0.2995 0.0211 -0.4928
1305031536.275618 -2.426590443 0.117966525 0.320558310 0.104468167 0.318782955 0.312442362 0.888731480 1305031536.272100 -0.8172 0.2216 1.4653 0.8165 -0.3179 0.0275 -0.4812
1305031536.307472 -2.440175056 0.117216967 0.312307239 0.094648480 0.336902171 0.328140229 0.877418101 1305031536.312000 -0.8109 0.2114 1.4596 0.8138 -0.3420 0.0365 -0.4685
1305031536.339530 -2.436631680 0.130167663 0.306512594 0.089301601 0.348710299 0.343676478 0.867359698 1305031536.342000 -0.8062 0.2034 1.4554 0.8112 -0.3594 0.0420 -0.4594
1305031536.375786 -2.439515114 0.132933110 0.301771998 0.081246413 0.363291353 0.360202610 0.855378568 1305031536.372000 -0.8023 0.1953 1.4514 0.8082 -0.3775 0.0480 -0.4495
1305031536.407665 -2.432479382 0.142758548 0.297667384 0.078064978 0.374809980 0.374079108 0.844682276 1305031536.412000 -0.7976 0.1839 1.4470 0.8027 -0.3997 0.0557 -0.4391
1305031536.439546 -2.433453083 0.153478473 0.294296980 0.074165478 0.387280375 0.387593687 0.833237350 1305031536.442100 -0.7949 0.1760 1.4434 0.7985 -0.4161 0.0622 -0.4305
1305031536.475492 -2.433927059 0.153007686 0.283771873 0.066070586 0.395613164 0.401842564 0.823193431 1305031536.472100 -0.7928 0.1683 1.4399 0.7967 -0.4271 0.0660 -0.4224
1305031536.507648 -2.437728405 0.154942185 0.283716559 0.061836548 0.402845263 0.410541147 0.815688610 1305031536.512000 -0.7908 0.1586 1.4355 0.7922 -0.4404 0.0690 -0.4168
1305031536.539583 -2.445848703 0.154372066 0.278347254 0.058838084 0.406619072 0.419724584 0.809339404 1305031536.542000 -0.7900 0.1517 1.4321 0.7910 -0.4467 0.0667 -0.4126
1305031536.575660 -2.445181608 0.162155122 0.273602426 0.056845337 0.403639317 0.428008586 0.806630373 1305031536.572000 -0.7896 0.1449 1.4287 0.7904 -0.4519 0.0622 -0.4089
1305031536.607624 -2.447263956 0.166637331 0.269580424 0.056197397 0.403895319 0.436777979 0.801832557 1305031536.612100 -0.7891 0.1351 1.4239 0.7863 -0.4616 0.0595 -0.4064
1305031536.639838 -2.446949959 0.174991399 0.265062809 0.055862956 0.402609974 0.444791108 0.798088610 1305031536.642000 -0.7892 0.1279 1.4197 0.7852 -0.4673 0.0552 -0.4026
1305031536.675456 -2.458647728 0.185282081 0.269658625 0.055378947 0.401705623 0.449217498 0.796096385 1305031536.672200 -0.7898 0.1211 1.4151 0.7863 -0.4692 0.0488 -0.3990
1305031536.707472 -2.458661079 0.194786012 0.265215337 0.053375706 0.397145092 0.451481640 0.797239721 1305031536.712000 -0.7907 0.1111 1.4092 0.7875 -0.4694 0.0469 -0.3967
1305031536.739722 -2.457170963 0.209136844 0.263571143 0.051791303 0.397560120 0.451596081 0.797072470 1305031536.742000 -0.7915 0.1028 1.4049 0.7882 -0.4709 0.0494 -0.3932
1305031536.775321 -2.459605694 0.213813275 0.253003061 0.047947846 0.399795353 0.450778633 0.796657622 1305031536.772000 -0.7919 0.0946 1.4005 0.7889 -0.4679 0.0543 -0.3947
1305031536.807301 -2.470071316 0.219247073 0.252434611 0.046612799 0.402127534 0.444240719 0.799231470 1305031536.812000 -0.7928 0.0823 1.3947 0.7935 -0.4597 0.0548 -0.3949
1305031536.839527 -2.473621845 0.230190158 0.249726832 0.043481130 0.400365233 0.439933419 0.802667856 1305031536.842000 -0.7930 0.0724 1.3906 0.7964 -0.4563 0.0537 -0.3932
1305031536.875419 -2.474405527 0.239295781 0.241363108 0.040360861 0.397696674 0.437090307 0.805704951 1305031536.872000 -0.7928 0.0619 1.3871 0.7991 -0.4509 0.0552 -0.3938
1305031536.907491 -2.477398872 0.251485139 0.233837783 0.038744722 0.398485363 0.427118480 0.810726881 1305031536.912000 -0.7913 0.0459 1.3836 0.8034 -0.4405 0.0624 -0.3958
1305031536.939530 -2.475243807 0.267049640 0.222921193 0.037661746 0.401001930 0.418288261 0.814133883 1305031536.942100 -0.7891 0.0325 1.3816 0.8041 -0.4370 0.0692 -0.3970
1305031536.975375 -2.475587368 0.272273898 0.208136916 0.036617041 0.403692365 0.415439963 0.814310312 1305031536.972000 -0.7863 0.0186 1.3800 0.8047 -0.4335 0.0732 -0.3991
1305031537.007412 -2.480687141 0.286470264 0.198777080 0.038141515 0.406286210 0.405736417 0.817835391 1305031537.012000 -0.7806 -0.0011 1.3785 0.8068 -0.4257 0.0779 -0.4023
1305031537.039427 -2.481499672 0.298502326 0.183583617 0.036993023 0.407842666 0.400283813 0.819797993 1305031537.042000 -0.7753 -0.0166 1.3778 0.8079 -0.4228 0.0810 -0.4024
1305031537.075341 -2.480474949 0.307426870 0.167606831 0.035551440 0.406900048 0.397346139 0.821756959 1305031537.072000 -0.7691 -0.0326 1.3776 0.8101 -0.4180 0.0813 -0.4030
1305031537.107337 -2.478616238 0.323101044 0.154676080 0.034348350 0.406814277 0.389715523 0.825496316 1305031537.112100 -0.7590 -0.0549 1.3782 0.8134 -0.4105 0.0850 -0.4032
1305031537.140656 -2.475228071 0.333536685 0.135697484 0.032072879 0.408557355 0.383278221 0.827737868 1305031537.142100 -0.7503 -0.0723 1.3797 0.8151 -0.4050 0.0895 -0.4045
1305031537.175377 -2.474686146 0.339814693 0.113894701 0.029795012 0.408785611 0.376390457 0.830865085 1305031537.172000 -0.7409 -0.0897 1.3814 0.8177 -0.3975 0.0917 -0.4063
1305031537.207445 -2.471208096 0.346150368 0.094327927 0.027244747 0.406723291 0.369998306 0.834826410 1305031537.212100 -0.7273 -0.1129 1.3846 0.8216 -0.3863 0.0933 -0.4088
1305031537.239415 -2.470462799 0.352641463 0.073226452 0.025869919 0.404234976 0.361420095 0.839821637 1305031537.242000 -0.7164 -0.1302 1.3875 0.8246 -0.3779 0.0925 -0.4107
1305031537.275504 -2.463910341 0.366439939 0.055402637 0.025631970 0.399650276 0.353120208 0.845534623 1305031537.272000 -0.7050 -0.1473 1.3909 0.8282 -0.3692 0.0912 -0.4117
1305031537.307646 -2.456044436 0.377606422 0.037124276 0.024207262 0.395617157 0.344901860 0.850848854 1305031537.312000 -0.6900 -0.1700 1.3964 0.8328 -0.3566 0.0911 -0.4135
1305031537.339718 -2.454226971 0.380983979 0.015969038 0.021951782 0.391328186 0.336386442 0.856285274 1305031537.342000 -0.6789 -0.1866 1.4007 0.8362 -0.3457 0.0895 -0.4162
1305031537.375388 -2.448002338 0.390101254 -0.004233837 0.022183478 0.384686410 0.325400829 0.863503635 1305031537.372000 -0.6680 -0.2028 1.4055 0.8395 -0.3335 0.0881 -0.4199
1305031537.407396 -2.449275970 0.396866947 -0.020678401 0.021632679 0.379469097 0.314249426 0.869932532 1305031537.412100 -0.6533 -0.2237 1.4111 0.8446 -0.3183 0.0827 -0.4226
1305031537.439649 -2.446128368 0.404278010 -0.036110878 0.020907676 0.370659351 0.305410951 0.876868665 1305031537.442000 -0.6428 -0.2384 1.4155 0.8489 -0.3056 0.0770 -0.4243
1305031537.475520 -2.439011097 0.406688839 -0.061228514 0.017715627 0.357762247 0.295340031 0.885701180 1305031537.472100 -0.6317 -0.2522 1.4199 0.8525 -0.2906 0.0729 -0.4283
1305031537.507492 -2.433415413 0.419464588 -0.077783227 0.017850386 0.348879457 0.281871945 0.893595397 1305031537.512100 -0.6163 -0.2696 1.4255 0.8584 -0.2744 0.0685 -0.4279
1305031537.539497 -2.424970865 0.427145600 -0.096527219 0.013288771 0.341013014 0.273742557 0.899221063 1305031537.542000 -0.6043 -0.2815 1.4295 0.8628 -0.2647 0.0657 -0.4257
1305031537.575529 -2.416433811 0.424252868 -0.114988923 0.008788164 0.335850269 0.268167585 0.902891755 1305031537.572000 -0.5917 -0.2926 1.4341 0.8637 -0.2568 0.0648 -0.4289
1305031537.607507 -2.409738064 0.426428556 -0.129850388 0.011853638 0.331110299 0.263940156 0.905848265 1305031537.612000 -0.5749 -0.3067 1.4410 0.8645 -0.2473 0.0600 -0.4334
1305031537.643442 -2.403064728 0.425197005 -0.144210219 0.013446080 0.321924359 0.257794529 0.910892904 1305031537.642000 -0.5618 -0.3160 1.4461 0.8664 -0.2360 0.0521 -0.4369
1305031537.675306 -2.383370161 0.429673761 -0.165537953 0.016942848 0.307270676 0.250909269 0.917792022 1305031537.672000 -0.5480 -0.3252 1.4515 0.8669 -0.2258 0.0463 -0.4419
1305031537.707483 -2.367820978 0.434611320 -0.183047533 0.023042943 0.300594747 0.241590112 0.922358990 1305031537.712100 -0.5282 -0.3365 1.4587 0.8656 -0.2137 0.0452 -0.4505
1305031537.743426 -2.357103348 0.436346322 -0.200175166 0.026739547 0.296924055 0.230938584 0.926168740 1305031537.742000 -0.5128 -0.3439 1.4636 0.8650 -0.2030 0.0451 -0.4567
1305031537.775469 -2.345154762 0.436228454 -0.215623140 0.031504516 0.292673916 0.220556691 0.929894745 1305031537.772000 -0.4964 -0.3510 1.4683 0.8639 -0.1936 0.0445 -0.4628
1305031537.807576 -2.332725763 0.437442362 -0.232718349 0.036058549 0.287114888 0.213646129 0.933070302 1305031537.812000 -0.4739 -0.3594 1.4736 0.8625 -0.1838 0.0405 -0.4698
1305031537.843458 -2.321528196 0.439466208 -0.242594838 0.039189421 0.281446338 0.204882905 0.936629653 1305031537.842000 -0.4568 -0.3654 1.4768 0.8632 -0.1737 0.0363 -0.4726
1305031537.875571 -2.303071260 0.446234703 -0.255805552 0.043328285 0.274388492 0.194091976 0.940830469 1305031537.872000 -0.4385 -0.3708 1.4798 0.8618 -0.1639 0.0342 -0.4788
1305031537.907514 -2.286628485 0.455530316 -0.269227803 0.046794742 0.269874752 0.186064452 0.943587780 1305031537.912000 -0.4128 -0.3778 1.4829 0.8620 -0.1543 0.0328 -0.4818
1305031537.943469 -2.272041321 0.462078482 -0.283584833 0.047033090 0.264940441 0.179348215 0.946270943 1305031537.942000 -0.3926 -0.3829 1.4845 0.8637 -0.1464 0.0301 -0.4814
1305031537.975426 -2.251107693 0.461491793 -0.296254754 0.044358656 0.259097368 0.173583895 0.949088752 1305031537.972000 -0.3719 -0.3878 1.4859 0.8643 -0.1387 0.0280 -0.4826
1305031538.007529 -2.229588747 0.470835775 -0.309528232 0.047630455 0.253619969 0.166543961 0.951667666 1305031538.012000 -0.3428 -0.3932 1.4881 0.8640 -0.1303 0.0249 -0.4858
1305031538.043452 -2.211060286 0.474047422 -0.323441267 0.045349691 0.247003049 0.165013984 0.953783631 1305031538.042000 -0.3204 -0.3968 1.4899 0.8669 -0.1242 0.0197 -0.4824
1305031538.075565 -2.186341524 0.467476308 -0.335640311 0.042752337 0.237968117 0.163011357 0.956541002 1305031538.072000 -0.2982 -0.3994 1.4928 0.8669 -0.1172 0.0139 -0.4842
1305031538.107629 -2.172956228 0.465572953 -0.346409380 0.047791850 0.228774801 0.163162008 0.958517671 1305031538.112000 -0.2687 -0.4020 1.4983 0.8647 -0.1131 -0.0021 -0.4894
1305031538.143487 -2.150013208 0.468543619 -0.359851301 0.051771726 0.213106111 0.166781723 0.961295664 1305031538.142000 -0.2480 -0.4030 1.5031 0.8650 -0.1091 -0.0149 -0.4895
1305031538.175565 -2.115583420 0.456076264 -0.374473453 0.050717145 0.196758941 0.163353741 0.965416610 1305031538.172000 -0.2277 -0.4040 1.5087 0.8642 -0.0989 -0.0221 -0.4929
1305031538.207697 -2.086136580 0.452993035 -0.387118995 0.059380531 0.188062429 0.154780805 0.968064785 1305031538.212000 -0.2009 -0.4057 1.5179 -0.8581 0.0892 0.0261 0.5049
1305031538.243517 -2.075634003 0.454578370 -0.396912575 0.070111699 0.186482102 0.146578565 0.968929052 1305031538.242000 -0.1819 -0.4076 1.5248 -0.8546 0.0817 0.0270 0.5122
1305031538.275489 -2.066353798 0.449201852 -0.413849115 0.076822840 0.182904467 0.133959338 0.970926940 1305031538.272000 -0.1637 -0.4097 1.5315 -0.8516 0.0714 0.0285 0.5185
1305031538.307386 -2.050451756 0.439011306 -0.432016730 0.085877068 0.177491903 0.124584749 0.972419858 1305031538.312000 -0.1396 -0.4126 1.5402 -0.8442 0.0575 0.0315 0.5321
1305031538.343413 -2.041750193 0.442959189 -0.442232251 0.098665021 0.171809301 0.110846415 0.973889053 1305031538.342000 -0.1213 -0.4149 1.5462 -0.8398 0.0456 0.0352 0.5399
1305031538.375553 -2.020997763 0.444020361 -0.456723094 0.108034529 0.161098853 0.102323376 0.975656509 1305031538.372000 -0.1028 -0.4174 1.5511 -0.8356 0.0370 0.0405 0.5465
1305031538.407511 -1.999992847 0.449072838 -0.465597630 0.119483322 0.152188063 0.095375851 0.976455808 1305031538.412100 -0.0771 -0.4212 1.5568 -0.8293 0.0286 0.0486 0.5559
1305031538.443598 -1.988971233 0.445716232 -0.476679206 0.126699254 0.143602028 0.090528235 0.977307737 1305031538.442000 -0.0574 -0.4243 1.5597 -0.8229 0.0198 0.0566 0.5651
1305031538.475570 -1.966818571 0.457942694 -0.490309834 0.137053713 0.129073486 0.082087606 0.978681743 1305031538.472000 -0.0375 -0.4280 1.5615 -0.8182 0.0100 0.0649 0.5711
1305031538.507548 -1.959497213 0.477629960 -0.499859691 0.144832328 0.119308852 0.073370859 0.979492605 1305031538.512000 -0.0105 -0.4337 1.5614 -0.8153 -0.0011 0.0768 0.5739
1305031538.543450 -1.937832594 0.486074835 -0.517244756 0.144301921 0.106128760 0.068350643 0.981448829 1305031538.542000 0.0102 -0.4389 1.5592 -0.8145 -0.0107 0.0841 0.5739
1305031538.575524 -1.929704785 0.505659997 -0.529037654 0.143234283 0.099686898 0.058025595 0.982944310 1305031538.572000 0.0316 -0.4444 1.5551 -0.8159 -0.0222 0.0880 0.5710
1305031538.607517 -1.917625189 0.522034287 -0.548934579 0.134958372 0.095414005 0.052685272 0.984838426 1305031538.612000 0.0615 -0.4524 1.5468 -0.8221 -0.0315 0.0910 0.5611
1305031538.643479 -1.872731209 0.517078698 -0.552773654 0.125329182 0.087853469 0.051589802 0.986870229 1305031538.642000 0.0846 -0.4592 1.5402 -0.8219 -0.0380 0.0910 0.5611
1305031538.675433 -1.867845297 0.538020253 -0.572704017 0.123551764 0.085596375 0.045506358 0.987591684 1305031538.672000 0.1077 -0.4676 1.5329 -0.8235 -0.0455 0.0933 0.5577
1305031538.707490 -1.864077687 0.588099182 -0.575082064 0.118586965 0.079131253 0.037873846 0.989060640 1305031538.712000 0.1386 -0.4775 1.5210 -0.8333 -0.0576 0.1037 0.5400
1305031538.743572 -1.842768908 0.602613747 -0.583029389 0.100135505 0.065253392 0.038791075 0.992073655 1305031538.741900 0.1622 -0.4851 1.5121 -0.8414 -0.0647 0.1142 0.5243
1305031538.775491 -1.808506608 0.612143576 -0.587957203 0.083568975 0.050672978 0.040162511 0.994402051 1305031538.772000 0.1859 -0.4925 1.5037 -0.8466 -0.0690 0.1221 0.5133
1305031538.808089 -1.776121497 0.627694011 -0.614248276 0.064850152 0.038909949 0.043278445 0.996196508 1305031538.812000 0.2179 -0.5016 1.4926 0.8583 0.0778 -0.1264 -0.4913
1305031538.843518 -1.745872855 0.634320140 -0.621743321 0.043176636 0.033306401 0.040051538 0.997708559 1305031538.842200 0.2425 -0.5076 1.4853 0.8658 0.0862 -0.1243 -0.4769
1305031538.875656 -1.719307780 0.640127897 -0.629967332 0.028009932 0.031812642 0.030972498 0.998621106 1305031538.872300 0.2676 -0.5130 1.4788 0.8702 0.0909 -0.1218 -0.4687
1305031538.907498 -1.698012948 0.656083047 -0.637265265 0.017319027 0.031858522 0.028690850 0.998930395 1305031538.912000 0.3016 -0.5184 1.4707 0.8771 0.0940 -0.1212 -0.4552
1305031538.943414 -1.670735598 0.663528383 -0.647517562 0.003978760 0.029164914 0.031634476 0.999065995 1305031538.942000 0.3273 -0.5213 1.4650 0.8819 0.0956 -0.1219 -0.4452
1305031538.975507 -1.641356826 0.668834805 -0.656999290 -0.007588186 0.026002984 0.031613108 0.999133110 1305031538.972000 0.3532 -0.5236 1.4599 0.8853 0.0978 -0.1219 -0.4380
1305031539.007520 -1.614311814 0.676686764 -0.663344562 -0.016297549 0.025241166 0.031325128 0.999057591 1305031539.012000 0.3877 -0.5251 1.4533 0.8895 0.1011 -0.1217 -0.4287
1305031539.043445 -1.588739157 0.681602955 -0.672061861 -0.025435511 0.024757234 0.030335179 0.998909354 1305031539.041900 0.4138 -0.5251 1.4483 0.8917 0.1043 -0.1207 -0.4237
1305031539.075515 -1.559401631 0.690165758 -0.677179098 -0.031163834 0.022377810 0.026248308 0.998918951 1305031539.072000 0.4400 -0.5239 1.4432 0.8932 0.1093 -0.1209 -0.4191
1305031539.107503 -1.531127334 0.701139092 -0.685189128 -0.038777649 0.019281631 0.022528598 0.998807788 1305031539.111900 0.4749 -0.5207 1.4359 0.8972 0.1170 -0.1198 -0.4086
1305031539.143607 -1.504884005 0.704943478 -0.685461402 -0.048340186 0.016956285 0.018361038 0.998518169 1305031539.141900 0.5010 -0.5165 1.4301 0.8986 0.1243 -0.1200 -0.4033
1305031539.175587 -1.475024581 0.712328196 -0.687175632 -0.057385031 0.010461451 0.012882610 0.998214185 1305031539.172000 0.5268 -0.5113 1.4238 0.9014 0.1332 -0.1217 -0.3935
1305031539.207601 -1.448814034 0.720294237 -0.690965533 -0.070889175 0.002622218 0.008054467 0.997448266 1305031539.212000 0.5606 -0.5026 1.4150 0.9057 0.1483 -0.1270 -0.3763
1305031539.243449 -1.423272729 0.722043812 -0.692014039 -0.087852731 -0.010045309 0.001600557 0.996081531 1305031539.242000 0.5856 -0.4955 1.4087 0.9079 0.1628 -0.1339 -0.3623
1305031539.275652 -1.385869741 0.733055174 -0.687900424 -0.097857974 -0.025742125 -0.007350900 0.994840264 1305031539.272000 0.6103 -0.4880 1.4031 0.9095 0.1756 -0.1373 -0.3509
1305031539.307521 -1.363128185 0.738756001 -0.692190886 -0.112825640 -0.031548198 -0.022772927 0.992852688 1305031539.312000 0.6429 -0.4775 1.3960 0.9125 0.1975 -0.1344 -0.3322
1305031539.343842 -1.323267698 0.727967501 -0.687267542 -0.137726113 -0.042174865 -0.039176177 0.988796234 1305031539.341900 0.6670 -0.4698 1.3914 0.9140 0.2181 -0.1263 -0.3180
1305031539.375556 -1.292063594 0.731553078 -0.688167214 -0.152118564 -0.044961520 -0.060505841 0.985483348 1305031539.372000 0.6904 -0.4615 1.3873 0.9138 0.2378 -0.1155 -0.3083
1305031539.407846 -1.256202459 0.736403048 -0.690131187 -0.166987866 -0.048303399 -0.079108998 0.981592357 1305031539.412000 0.7226 -0.4505 1.3817 0.9151 0.2611 -0.1011 -0.2902
1305031539.443431 -1.239374042 0.732561350 -0.688703060 -0.187255442 -0.044807911 -0.095311783 0.976649046 1305031539.441900 0.7455 -0.4420 1.3792 0.9151 0.2746 -0.0963 -0.2793
1305031539.475605 -1.207395792 0.727674007 -0.686424911 -0.198093310 -0.055724174 -0.107997023 0.972620428 1305031539.472000 0.7681 -0.4338 1.3785 0.9133 0.2880 -0.0990 -0.2703
1305031539.507506 -1.182625055 0.724227071 -0.686838031 -0.206699759 -0.067789100 -0.114068963 0.969364822 1305031539.512000 0.7969 -0.4221 1.3783 0.9107 0.3018 -0.1077 -0.2607
1305031539.543459 -1.156865954 0.727579236 -0.692468286 -0.210137725 -0.077920467 -0.120466612 0.967087567 1305031539.541900 0.8185 -0.4131 1.3799 0.9097 0.3103 -0.1121 -0.2524
1305031539.575448 -1.125167608 0.731797397 -0.695762694 -0.207746223 -0.089327753 -0.127441183 0.965722919 1305031539.572100 0.8394 -0.4036 1.3831 0.9066 0.3189 -0.1161 -0.2508
1305031539.607559 -1.096604705 0.724759758 -0.689471424 -0.207956731 -0.100324258 -0.138952374 0.963006377 1305031539.612000 0.8668 -0.3908 1.3881 0.9008 0.3337 -0.1195 -0.2507
1305031539.643437 -1.072627783 0.721304774 -0.693208039 -0.205536246 -0.106156208 -0.152068138 0.960916698 1305031539.642000 0.8868 -0.3801 1.3920 0.8957 0.3469 -0.1187 -0.2515
1305031539.675458 -1.047883391 0.715768039 -0.690714836 -0.198742777 -0.112813070 -0.165158719 0.959425390 1305031539.672000 0.9065 -0.3685 1.3961 0.8892 0.3591 -0.1196 -0.2571
1305031539.707426 -1.025400043 0.701733589 -0.689756632 -0.194463715 -0.120441034 -0.176434845 0.957365453 1305031539.712000 0.9321 -0.3518 1.4004 0.8799 0.3757 -0.1235 -0.2635
1305031539.743465 -1.004902124 0.689956009 -0.690350771 -0.192506403 -0.129271001 -0.186747491 0.954649508 1305031539.741900 0.9509 -0.3385 1.4027 0.8737 0.3874 -0.1277 -0.2651
1305031539.775488 -0.980612576 0.684934020 -0.686210513 -0.191102922 -0.138522878 -0.197194010 0.951528072 1305031539.772000 0.9692 -0.3245 1.4038 0.8690 0.3978 -0.1311 -0.2635
1305031539.807653 -0.959138870 0.672266126 -0.677491128 -0.191985384 -0.149717450 -0.204102859 0.948192120 1305031539.812000 0.9927 -0.3046 1.4042 0.8593 0.4147 -0.1402 -0.2644
1305031539.843466 -0.935089946 0.662431538 -0.672763884 -0.191587552 -0.165939346 -0.215486914 0.943039596 1305031539.841900 1.0099 -0.2894 1.4033 0.8527 0.4281 -0.1471 -0.2607
1305031539.875593 -0.912115693 0.657501757 -0.665441930 -0.193194956 -0.178932264 -0.225975111 0.937866807 1305031539.872000 1.0268 -0.2734 1.4010 0.8464 0.4402 -0.1536 -0.2575
1305031539.907642 -0.888481855 0.657829106 -0.658304036 -0.192615226 -0.190825433 -0.239064530 0.932380378 1305031539.912000 1.0487 -0.2516 1.3969 0.8369 0.4601 -0.1579 -0.2511
1305031539.943541 -0.861202180 0.658063293 -0.649517477 -0.192435294 -0.200398549 -0.255857974 0.925929725 1305031539.942000 1.0649 -0.2347 1.3936 0.8313 0.4718 -0.1572 -0.2483
1305031539.975883 -0.835239351 0.655931950 -0.637984216 -0.186527535 -0.206472948 -0.266454458 0.922810078 1305031539.972000 1.0806 -0.2175 1.3908 0.8247 0.4814 -0.1575 -0.2516
1305031540.007422 -0.808597982 0.649707317 -0.631384254 -0.180847928 -0.211717591 -0.276316911 0.919847071 1305031540.011900 1.1010 -0.1948 1.3876 0.8176 0.4923 -0.1568 -0.2542
1305031540.043468 -0.785340905 0.648223341 -0.619920373 -0.171939909 -0.213694066 -0.284881830 0.918484509 1305031540.042000 1.1155 -0.1777 1.3861 0.8128 0.4959 -0.1568 -0.2624
1305031540.075632 -0.764056802 0.640574992 -0.604998469 -0.157320663 -0.218499139 -0.286103398 0.919594049 1305031540.072000 1.1293 -0.1610 1.3857 0.8054 0.4996 -0.1618 -0.2750
1305031540.107421 -0.743929267 0.630394340 -0.593521833 -0.145323813 -0.222985834 -0.289074093 0.919562101 1305031540.112000 1.1471 -0.1394 1.3861 0.8009 0.4979 -0.1656 -0.2884
1305031540.143443 -0.724296808 0.624339342 -0.590411842 -0.131762356 -0.219520926 -0.285627127 0.923507631 1305031540.141900 1.1599 -0.1240 1.3868 0.7992 0.4936 -0.1664 -0.3000
1305031540.175595 -0.718353570 0.584484100 -0.589187026 -0.133055523 -0.210224062 -0.285183579 0.925620019 1305031540.172000 1.1725 -0.1092 1.3889 0.7978 0.4866 -0.1677 -0.3141
1305031540.207411 -0.705765665 0.566360116 -0.582523525 -0.122678138 -0.204626724 -0.279072344 0.930159450 1305031540.212000 1.1891 -0.0909 1.3927 0.7949 0.4781 -0.1702 -0.3325
1305031540.243496 -0.689934194 0.549493968 -0.574076653 -0.107216306 -0.211302072 -0.274970651 0.931797862 1305031540.242000 1.2006 -0.0786 1.3963 0.7873 0.4753 -0.1815 -0.3483
1305031540.275604 -0.669214725 0.543804228 -0.575567901 -0.090439230 -0.218695179 -0.265583992 0.934589922 1305031540.272000 1.2120 -0.0668 1.3994 0.7851 0.4688 -0.1915 -0.3566
1305031540.307411 -0.663634419 0.518813431 -0.570268869 -0.089791723 -0.220319390 -0.256633133 0.936769068 1305031540.311900 1.2268 -0.0513 1.4038 0.7817 0.4606 -0.2029 -0.3683
1305031540.343456 -0.630638421 0.524296224 -0.568962038 -0.065242536 -0.227539778 -0.245172605 0.940137982 1305031540.342000 1.2383 -0.0400 1.4076 0.7808 0.4512 -0.2085 -0.3786
1305031540.375438 -0.607571483 0.504775465 -0.557604194 -0.058358882 -0.228627846 -0.232305616 0.943587661 1305031540.371900 1.2499 -0.0285 1.4118 0.7821 0.4385 -0.2102 -0.3896
1305031540.407504 -0.603281319 0.504000962 -0.563036203 -0.038072895 -0.219202042 -0.220019296 0.949785471 1305031540.411900 1.2651 -0.0149 1.4185 0.7798 0.4227 -0.2197 -0.4062
1305031540.443453 -0.583580017 0.497548491 -0.565587878 -0.025518924 -0.220925614 -0.205757141 0.952997684 1305031540.441900 1.2767 -0.0051 1.4233 0.7805 0.4103 -0.2267 -0.4137
1305031540.475476 -0.563415229 0.467252880 -0.554991245 -0.022460068 -0.225218147 -0.190151006 0.955308795 1305031540.472000 1.2884 0.0043 1.4285 0.7800 0.3966 -0.2328 -0.4244
1305031540.507525 -0.556039095 0.481065303 -0.565308809 0.002121243 -0.216947764 -0.175951973 0.960192740 1305031540.512000 1.3039 0.0161 1.4354 0.7783 0.3807 -0.2419 -0.4369
1305031540.543427 -0.531263828 0.471247196 -0.559479952 0.012727410 -0.217492461 -0.166357964 0.961696446 1305031540.542000 1.3156 0.0252 1.4398 0.7771 0.3703 -0.2445 -0.4464
1305031540.575635 -0.512232184 0.454040170 -0.555102587 0.025693521 -0.210669398 -0.159205973 0.964163721 1305031540.572000 1.3277 0.0346 1.4449 0.7751 0.3588 -0.2424 -0.4601
1305031540.607508 -0.496591151 0.458260536 -0.564910889 0.043473519 -0.197728246 -0.148222789 0.968010128 1305031540.611900 1.3444 0.0466 1.4509 0.7755 0.3410 -0.2386 -0.4748
1305031540.643443 -0.476872325 0.454683214 -0.563784540 0.051469114 -0.188012525 -0.139889464 0.970789969 1305031540.642000 1.3567 0.0557 1.4541 0.7788 0.3313 -0.2326 -0.4791
1305031540.675895 -0.459648341 0.440096706 -0.558765411 0.058293398 -0.175376907 -0.130663320 0.974049270 1305031540.672000 1.3695 0.0652 1.4574 0.7801 0.3162 -0.2271 -0.4898
1305031540.707442 -0.441697866 0.443029851 -0.564759016 0.068398118 -0.160899147 -0.117279202 0.977588236 1305031540.711900 1.3862 0.0775 1.4607 0.7833 0.2977 -0.2225 -0.4983
1305031540.743545 -0.418357909 0.441277683 -0.567061841 0.073828116 -0.146902055 -0.106285244 0.980649054 1305031540.741900 1.3992 0.0866 1.4626 -0.7868 -0.2834 0.2151 0.5044
1305031540.775513 -0.405562878 0.432843775 -0.571106315 0.080067277 -0.127250746 -0.096832111 0.983880103 1305031540.772000 1.4124 0.0952 1.4646 -0.7890 -0.2679 0.2065 0.5130
1305031540.807495 -0.367373288 0.426814705 -0.568240345 0.086171307 -0.112386338 -0.085204586 0.986247420 1305031540.812000 1.4298 0.1059 1.4665 -0.7945 -0.2435 0.1912 0.5225
1305031540.843557 -0.363738030 0.425649107 -0.573497534 0.091166906 -0.084287763 -0.075081035 0.989417493 1305031540.842000 1.4421 0.1129 1.4676 -0.7989 -0.2258 0.1770 0.5286
1305031540.875472 -0.350423843 0.419904500 -0.575834334 0.095350720 -0.062622644 -0.064919077 0.991348684 1305031540.872000 1.4529 0.1189 1.4687 -0.8015 -0.2106 0.1660 0.5345
1305031540.907447 -0.335099041 0.423602760 -0.567989409 0.102436796 -0.043491267 -0.054763194 0.992278278 1305031540.911900 1.4667 0.1263 1.4701 -0.8052 -0.1889 0.1499 0.5417
1305031540.943442 -0.328165412 0.423399955 -0.576092780 0.105638377 -0.022197032 -0.042974968 0.993227541 1305031540.941900 1.4757 0.1313 1.4708 -0.8083 -0.1703 0.1401 0.5458
1305031540.975401 -0.331152380 0.422505468 -0.585554719 0.108614571 -0.003733839 -0.029471897 0.993639946 1305031540.972000 1.4837 0.1364 1.4719 -0.8096 -0.1555 0.1355 0.5496
1305031541.007473 -0.325750709 0.421009272 -0.585331798 0.117120944 0.009012746 -0.019955896 0.992876232 1305031541.011900 1.4927 0.1423 1.4737 -0.8072 -0.1377 0.1302 0.5591
1305031541.043464 -0.321383506 0.417653948 -0.590196013 0.123160988 0.022381188 -0.005892111 0.992116809 1305031541.041900 1.4985 0.1457 1.4748 -0.8090 -0.1226 0.1257 0.5610
1305031541.075485 -0.318136930 0.414162636 -0.586976051 0.130555511 0.031758748 0.004967961 0.990919769 1305031541.062000 1.5017 0.1483 1.4756 -0.8070 -0.1139 0.1246 0.5660
1305031541.107513 -0.313763589 0.413694739 -0.587013483 0.135490999 0.036235854 0.010977799 0.990054846 1305031541.102000 1.5067 0.1533 1.4765 -0.8056 -0.1036 0.1241 0.5700
1305031541.143507 -0.304694206 0.409289896 -0.585462928 0.138134822 0.043164924 0.016679404 0.989331782 1305031541.142000 1.5112 0.1585 1.4771 -0.8051 -0.0931 0.1190 0.5735
1305031541.175472 -0.310802937 0.409850001 -0.586444676 0.144248098 0.055482406 0.021719206 0.987746179 1305031541.182000 1.5143 0.1627 1.4772 -0.8035 -0.0826 0.1142 0.5783
1305031541.207454 -0.319564879 0.411458343 -0.587499976 0.144369766 0.060454570 0.023192132 0.987403035 1305031541.211900 1.5150 0.1666 1.4765 -0.8055 -0.0825 0.1152 0.5754
1305031541.243593 -0.315941423 0.410138547 -0.582246304 0.139277130 0.056910511 0.025215400 0.988295138 1305031541.241900 1.5154 0.1710 1.4754 -0.8076 -0.0833 0.1178 0.5718
1305031541.275691 -0.317456484 0.410466731 -0.577797532 0.135335222 0.053566583 0.029127486 0.988921940 1305031541.271900 1.5154 0.1752 1.4740 -0.8104 -0.0832 0.1224 0.5668
1305031541.307436 -0.320667833 0.407514691 -0.581667304 0.127206117 0.045165200 0.027440397 0.990467429 1305031541.312000 1.5138 0.1808 1.4719 -0.8133 -0.0892 0.1304 0.5601
1305031541.343493 -0.320783675 0.404284894 -0.581204534 0.120780192 0.033553358 0.026900912 0.991747260 1305031541.341900 1.5120 0.1845 1.4705 -0.8154 -0.0966 0.1383 0.5538
1305031541.375507 -0.322730899 0.403215349 -0.576207697 0.112795971 0.021359019 0.024096526 0.993096292 1305031541.372000 1.5095 0.1883 1.4691 -0.8173 -0.1049 0.1467 0.5472
1305031541.407707 -0.325053096 0.401551068 -0.571487904 0.105356604 0.010560841 0.018267574 0.994210601 1305031541.411900 1.5063 0.1922 1.4679 -0.8202 -0.1184 0.1537 0.5382
1305031541.443699 -0.323895812 0.396923035 -0.564405322 0.099301122 -0.002184567 0.011418757 0.994989514 1305031541.441900 1.5028 0.1948 1.4675 -0.8196 -0.1308 0.1591 0.5347
1305031541.475389 -0.330995113 0.398851842 -0.566480577 0.095625229 -0.013498463 0.000006287 0.995325863 1305031541.472000 1.4990 0.1975 1.4676 -0.8181 -0.1457 0.1649 0.5314
1305031541.507656 -0.332430273 0.404239476 -0.554072380 0.090730980 -0.028513502 -0.014519179 0.995361269 1305031541.511900 1.4932 0.2003 1.4679 -0.8186 -0.1696 0.1703 0.5217
1305031541.543489 -0.334442765 0.403760970 -0.549880743 0.084816106 -0.041004047 -0.028539738 0.995143414 1305031541.541900 1.4890 0.2027 1.4681 -0.8171 -0.1852 0.1735 0.5177
1305031541.575608 -0.338075608 0.403206557 -0.545097172 0.077831641 -0.053034212 -0.041830186 0.994675756 1305031541.572000 1.4844 0.2043 1.4691 -0.8171 -0.2029 0.1751 0.5104
1305031541.607431 -0.342313856 0.396958947 -0.541230559 0.070878997 -0.067855574 -0.058606736 0.993447065 1305031541.611900 1.4775 0.2069 1.4705 -0.8122 -0.2290 0.1827 0.5045
1305031541.643543 -0.344978154 0.394813865 -0.536666572 0.066347539 -0.084289499 -0.074235402 0.991454661 1305031541.642000 1.4722 0.2081 1.4718 0.8086 0.2475 -0.1879 -0.4995
1305031541.675424 -0.362039626 0.412847966 -0.522563875 0.066771887 -0.097043350 -0.091278352 0.988833845 1305031541.672000 1.4666 0.2096 1.4737 0.8031 0.2691 -0.1924 -0.4955
1305031541.707418 -0.363308340 0.408682913 -0.516772211 0.061513890 -0.112714253 -0.113180205 0.985241950 1305031541.711900 1.4587 0.2109 1.4759 0.7957 0.2990 -0.1946 -0.4895
1305031541.743439 -0.372162968 0.411461860 -0.516744375 0.057580814 -0.125292465 -0.140889198 0.980375707 1305031541.742000 1.4522 0.2114 1.4775 0.7880 0.3276 -0.1935 -0.4841
1305031541.775415 -0.367096812 0.410249025 -0.511105001 0.053054515 -0.141373351 -0.175998315 0.972740114 1305031541.771900 1.4458 0.2118 1.4791 0.7784 0.3593 -0.1878 -0.4794
1305031541.807470 -0.352158606 0.392320901 -0.516195834 0.042372882 -0.153668091 -0.209438145 0.964741588 1305031541.812000 1.4376 0.2116 1.4804 0.7679 0.3979 -0.1721 -0.4715
1305031541.843441 -0.369609594 0.386087835 -0.514262795 0.033202291 -0.159071326 -0.240797132 0.956875443 1305031541.841900 1.4313 0.2109 1.4817 0.7576 0.4251 -0.1680 -0.4659
1305031541.875438 -0.378776968 0.382532716 -0.511354566 0.030135576 -0.173223391 -0.262821108 0.948688865 1305031541.872000 1.4260 0.2099 1.4833 0.7474 0.4474 -0.1700 -0.4607
1305031541.907570 -0.391135454 0.391082108 -0.510960639 0.027463950 -0.187817335 -0.277083099 0.941910446 1305031541.912000 1.4189 0.2096 1.4848 0.7368 0.4714 -0.1799 -0.4500
1305031541.943524 -0.395882905 0.383674622 -0.508292735 0.019306179 -0.210072711 -0.286395311 0.934598565 1305031541.942100 1.4142 0.2102 1.4859 0.7307 0.4849 -0.1921 -0.4404
1305031541.975524 -0.404854000 0.376954228 -0.507165134 0.013217873 -0.229773283 -0.290740162 0.928708613 1305031541.972000 1.4095 0.2116 1.4866 0.7251 0.4946 -0.2068 -0.4323
1305031542.007694 -0.408695042 0.377455771 -0.504928052 0.009174821 -0.252794862 -0.293451816 0.921898365 1305031542.012000 1.4030 0.2143 1.4865 0.7163 0.5084 -0.2295 -0.4193
1305031542.043489 -0.409190118 0.369457841 -0.501291037 0.002928849 -0.275375962 -0.297237188 0.914226234 1305031542.041900 1.3985 0.2168 1.4858 0.7092 0.5185 -0.2419 -0.4119
1305031542.075555 -0.406296730 0.363426834 -0.491632223 0.001360174 -0.289819598 -0.306024075 0.906836271 1305031542.072000 1.3936 0.2201 1.4841 0.7032 0.5275 -0.2466 -0.4080
1305031542.107416 -0.409732461 0.368367493 -0.483919084 0.001626465 -0.295283496 -0.316538393 0.901447952 1305031542.111900 1.3872 0.2253 1.4804 0.6955 0.5420 -0.2451 -0.4030
1305031542.143525 -0.415325880 0.366824538 -0.477543592 -0.001137646 -0.300087422 -0.329125494 0.895333827 1305031542.141900 1.3825 0.2295 1.4771 0.6903 0.5518 -0.2446 -0.3989
1305031542.175524 -0.417091846 0.361996323 -0.470778972 -0.005435700 -0.309051603 -0.332768947 0.890910983 1305031542.171900 1.3776 0.2343 1.4738 0.6857 0.5580 -0.2493 -0.3953
1305031542.207368 -0.423454314 0.373815566 -0.463671803 -0.008257775 -0.318195015 -0.337826222 0.885752320 1305031542.211900 1.3713 0.2411 1.4685 0.6806 0.5695 -0.2575 -0.3822
1305031542.244091 -0.425906926 0.364547580 -0.452925652 -0.015935086 -0.330807984 -0.343722612 0.878730297 1305031542.241900 1.3670 0.2468 1.4647 0.6762 0.5758 -0.2643 -0.3760
1305031542.275425 -0.409041196 0.360513717 -0.442239493 -0.020020498 -0.342880040 -0.342143446 0.874625862 1305031542.272000 1.3632 0.2538 1.4607 0.6738 0.5811 -0.2670 -0.3702
1305031542.307528 -0.402979463 0.356045395 -0.428641379 -0.025893871 -0.343946218 -0.349010229 0.871333718 1305031542.311900 1.3588 0.2635 1.4546 0.6744 0.5882 -0.2581 -0.3642
1305031542.343479 -0.405021936 0.351236522 -0.415592879 -0.028987205 -0.339690149 -0.356384903 0.869919658 1305031542.341900 1.3558 0.2719 1.4502 0.6740 0.5905 -0.2530 -0.3648
1305031542.375553 -0.405828923 0.353052139 -0.410191834 -0.031039501 -0.334536105 -0.356972635 0.871603489 1305031542.372000 1.3532 0.2813 1.4459 0.6748 0.5907 -0.2518 -0.3637
1305031542.407482 -0.403206855 0.347966403 -0.395288497 -0.039595507 -0.335880280 -0.354866058 0.871600091 1305031542.411900 1.3505 0.2952 1.4404 0.6799 0.5906 -0.2506 -0.3552
1305031542.443447 -0.404124826 0.341011167 -0.383656174 -0.045281854 -0.334990025 -0.354143351 0.871959686 1305031542.441900 1.3488 0.3069 1.4373 0.6824 0.5896 -0.2514 -0.3515
1305031542.475446 -0.403634161 0.334733367 -0.372643679 -0.047720112 -0.337274373 -0.350050062 0.872601748 1305031542.472000 1.3475 0.3197 1.4350 0.6835 0.5875 -0.2562 -0.3493
1305031542.507447 -0.394757181 0.325962037 -0.359337598 -0.052720807 -0.342367411 -0.343163341 0.873065889 1305031542.512000 1.3458 0.3387 1.4320 0.6877 0.5825 -0.2638 -0.3438
1305031542.543425 -0.390175700 0.312180579 -0.342721224 -0.057851780 -0.344812423 -0.339006186 0.873402774 1305031542.541900 1.3453 0.3536 1.4307 0.6905 0.5796 -0.2661 -0.3414
1305031542.575428 -0.385862857 0.301176876 -0.327610254 -0.058141515 -0.346854627 -0.332652450 0.875016451 1305031542.571900 1.3449 0.3691 1.4300 0.6915 0.5754 -0.2709 -0.3426
1305031542.607410 -0.377492547 0.297793597 -0.318756253 -0.057338268 -0.347587913 -0.324547470 0.877817690 1305031542.611900 1.3445 0.3906 1.4292 0.6963 0.5695 -0.2761 -0.3385
1305031542.643424 -0.372652501 0.283344835 -0.301862925 -0.062635101 -0.350192577 -0.318132073 0.878768444 1305031542.641900 1.3445 0.4070 1.4287 0.6988 0.5653 -0.2806 -0.3366
1305031542.675341 -0.364527047 0.271253467 -0.286560416 -0.062878616 -0.353189439 -0.312735736 0.879488409 1305031542.671900 1.3442 0.4233 1.4284 0.6990 0.5629 -0.2845 -0.3371
1305031542.707362 -0.353746861 0.264267653 -0.272547007 -0.060545847 -0.355426461 -0.311565638 0.879166126 1305031542.711900 1.3436 0.4450 1.4272 0.6987 0.5624 -0.2860 -0.3372
1305031542.743855 -0.346402407 0.256267458 -0.256006896 -0.062450703 -0.354297131 -0.311043948 0.879673302 1305031542.742000 1.3429 0.4616 1.4256 0.7008 0.5616 -0.2842 -0.3358
1305031542.775624 -0.344588816 0.246799707 -0.243490085 -0.063671924 -0.352105588 -0.311059147 0.880459964 1305031542.771900 1.3421 0.4779 1.4242 0.7010 0.5619 -0.2834 -0.3356
1305031542.807676 -0.335350066 0.238511503 -0.229203150 -0.063042670 -0.356522799 -0.312471300 0.878224790 1305031542.811900 1.3403 0.4996 1.4216 0.6987 0.5647 -0.2862 -0.3331
1305031542.843453 -0.326707274 0.233309925 -0.211559623 -0.065665394 -0.356796116 -0.312229693 0.878007531 1305031542.841900 1.3384 0.5163 1.4187 0.7007 0.5652 -0.2839 -0.3300
1305031542.875473 -0.323164761 0.221852824 -0.193995237 -0.070181124 -0.354449481 -0.313619405 0.878113329 1305031542.871900 1.3364 0.5329 1.4160 0.7024 0.5661 -0.2807 -0.3277
1305031542.907374 -0.318068862 0.219053492 -0.179003447 -0.071405590 -0.352604121 -0.314504623 0.878440917 1305031542.911900 1.3331 0.5555 1.4116 0.7039 0.5686 -0.2773 -0.3231
1305031542.943449 -0.318757027 0.207685515 -0.162913054 -0.077429734 -0.352007478 -0.316925675 0.877298951 1305031542.942000 1.3303 0.5724 1.4082 0.7032 0.5709 -0.2780 -0.3200
1305031542.975416 -0.315776467 0.203135580 -0.149030745 -0.079410113 -0.355449170 -0.315736681 0.876162231 1305031542.971900 1.3272 0.5894 1.4047 0.7024 0.5721 -0.2822 -0.3156
1305031543.007462 -0.309477985 0.192279816 -0.131644592 -0.086203486 -0.360369563 -0.314027131 0.874122262 1305031543.011900 1.3226 0.6123 1.3996 0.7042 0.5727 -0.2859 -0.3073
1305031543.043546 -0.307777882 0.182194531 -0.114005469 -0.091520697 -0.364526123 -0.311982661 0.872588933 1305031543.041900 1.3190 0.6300 1.3960 0.7037 0.5730 -0.2909 -0.3031
1305031543.075465 -0.299102157 0.180383444 -0.096430123 -0.093303628 -0.369791448 -0.310183823 0.870824158 1305031543.071900 1.3156 0.6475 1.3922 0.7044 0.5749 -0.2929 -0.2960
1305031543.107471 -0.294490695 0.169621021 -0.076127380 -0.100951150 -0.372357696 -0.311211109 0.868508041 1305031543.111900 1.3109 0.6709 1.3866 0.7052 0.5775 -0.2929 -0.2888
1305031543.143424 -0.287602007 0.162698746 -0.055746734 -0.104801372 -0.373374522 -0.311715305 0.867433965 1305031543.141900 1.3084 0.6883 1.3825 0.7071 0.5786 -0.2901 -0.2847
1305031543.175587 -0.288115889 0.151501611 -0.040364236 -0.111319453 -0.372138530 -0.311352611 0.867283404 1305031543.171900 1.3055 0.7053 1.3788 0.7081 0.5778 -0.2921 -0.2817
1305031543.207464 -0.285125196 0.142787576 -0.023474783 -0.116373152 -0.374066591 -0.304745167 0.868137002 1305031543.211900 1.3026 0.7271 1.3741 0.7121 0.5718 -0.2989 -0.2770
1305031543.243490 -0.279544979 0.134870753 -0.008680969 -0.121729761 -0.376168758 -0.295596749 0.869655967 1305031543.241900 1.3008 0.7419 1.3715 0.7169 0.5662 -0.3022 -0.2721
1305031543.275504 -0.278696120 0.122682326 0.006043896 -0.125385046 -0.378145844 -0.288579822 0.870635390 1305031543.271900 1.2998 0.7552 1.3702 0.7187 0.5616 -0.3065 -0.2723
1305031543.307391 -0.275535464 0.115677312 0.013919055 -0.121051311 -0.380055547 -0.282517225 0.872403800 1305031543.311900 1.2984 0.7707 1.3697 0.7190 0.5555 -0.3142 -0.2750
1305031543.343502 -0.270777464 0.109688058 0.021745622 -0.119693056 -0.382207274 -0.276879609 0.873458028 1305031543.341900 1.2973 0.7800 1.3700 0.7191 0.5536 -0.3176 -0.2748
1305031543.375520 -0.270705104 0.102580138 0.029289700 -0.115418971 -0.384918839 -0.274117768 0.873713613 1305031543.371900 1.2966 0.7871 1.3715 0.7164 0.5516 -0.3219 -0.2809
1305031543.407575 -0.267575443 0.097084746 0.027959868 -0.106948346 -0.388834625 -0.274958462 0.872792959 1305031543.411900 1.2965 0.7937 1.3747 0.7109 0.5526 -0.3282 -0.2857
1305031543.443593 -0.266326696 0.094670720 0.031300642 -0.101474606 -0.392735720 -0.272365808 0.872512698 1305031543.441900 1.2965 0.7972 1.3777 0.7085 0.5516 -0.3317 -0.2893
1305031543.475420 -0.266954094 0.092706189 0.027764328 -0.096696243 -0.394145280 -0.270932913 0.872865796 1305031543.471900 1.2966 0.7989 1.3812 0.7067 0.5514 -0.3342 -0.2913
1305031543.507652 -0.268664479 0.089310542 0.022025108 -0.091523401 -0.398923188 -0.273518682 0.870443165 1305031543.511900 1.2968 0.7975 1.3873 0.6984 0.5569 -0.3394 -0.2947
1305031543.543433 -0.269024968 0.089103296 0.018347234 -0.083973564 -0.406250417 -0.276284397 0.866934836 1305031543.541900 1.2966 0.7946 1.3924 0.6927 0.5590 -0.3449 -0.2977
1305031543.575393 -0.272264838 0.084976293 0.006652027 -0.081298038 -0.407118440 -0.278267056 0.866148174 1305031543.572000 1.2969 0.7903 1.3983 0.6907 0.5609 -0.3453 -0.2987
1305031543.607524 -0.273583293 0.088238321 -0.006190896 -0.073862337 -0.413400948 -0.283279240 0.862204671 1305031543.611900 1.2974 0.7811 1.4079 0.6815 0.5687 -0.3498 -0.2996
1305031543.643400 -0.274819702 0.087575451 -0.017467752 -0.073593996 -0.421032637 -0.290219307 0.856205702 1305031543.641900 1.2976 0.7729 1.4157 0.6766 0.5761 -0.3508 -0.2955
1305031543.675460 -0.283944964 0.075257987 -0.024313733 -0.077054374 -0.423907310 -0.292540878 0.853689075 1305031543.671900 1.2983 0.7641 1.4253 0.6750 0.5767 -0.3514 -0.2973
1305031543.707478 -0.285617232 0.078773037 -0.044996388 -0.069526933 -0.425292283 -0.293291211 0.853388965 1305031543.711900 1.3000 0.7514 1.4396 0.6712 0.5789 -0.3535 -0.2989
1305031543.743399 -0.290411681 0.070487298 -0.059867173 -0.071940705 -0.427491963 -0.294267029 0.851752341 1305031543.741900 1.3019 0.7414 1.4510 0.6704 0.5802 -0.3539 -0.2977
1305031543.775642 -0.299001962 0.065866627 -0.079121582 -0.071173035 -0.427976519 -0.290926903 0.852720380 1305031543.771900 1.3042 0.7314 1.4634 0.6701 0.5779 -0.3578 -0.2982
1305031543.807514 -0.296621680 0.066284850 -0.098357804 -0.068959005 -0.432908356 -0.285731196 0.852169394 1305031543.811900 1.3080 0.7171 1.4809 0.6707 0.5763 -0.3626 -0.2942
1305031543.843406 -0.296747863 0.062226355 -0.113215216 -0.076137938 -0.436597973 -0.281338006 0.851136982 1305031543.841900 1.3111 0.7060 1.4943 0.6736 0.5759 -0.3636 -0.2871
1305031543.875410 -0.300884902 0.051956873 -0.132826954 -0.084455349 -0.436254531 -0.276948184 0.851967692 1305031543.872000 1.3139 0.6949 1.5090 0.6771 0.5711 -0.3665 -0.2847
1305031543.907459 -0.301354080 0.046674702 -0.154025316 -0.091074541 -0.433179557 -0.271596968 0.854573548 1305031543.911900 1.3193 0.6790 1.5294 0.6852 0.5655 -0.3646 -0.2789
1305031543.943413 -0.304859430 0.036069367 -0.175080150 -0.096589267 -0.428909540 -0.270053446 0.856608570 1305031543.941900 1.3243 0.6660 1.5454 0.6902 0.5620 -0.3615 -0.2777
1305031543.975473 -0.304603577 0.034261424 -0.195808202 -0.095606022 -0.422259301 -0.267113984 0.860933602 1305031543.971900 1.3292 0.6525 1.5618 0.6950 0.5574 -0.3573 -0.2804
1305031544.007491 -0.305454671 0.024016218 -0.210849881 -0.095741577 -0.413700283 -0.264114767 0.865984440 1305031544.011900 1.3364 0.6334 1.5838 0.7028 0.5498 -0.3479 -0.2876
1305031544.043491 -0.304375231 0.023814803 -0.235578492 -0.087401703 -0.401473552 -0.262908906 0.872959793 1305031544.041900 1.3422 0.6177 1.5998 0.7082 0.5428 -0.3395 -0.2975
1305031544.075509 -0.300689042 0.019608490 -0.261212081 -0.085254215 -0.385713667 -0.259903818 0.881139398 1305031544.072000 1.3484 0.6009 1.6150 0.7169 0.5359 -0.3265 -0.3036
1305031544.107376 -0.317919135 0.016743053 -0.289642811 -0.082478665 -0.366847247 -0.256464720 0.890419126 1305031544.111900 1.3557 0.5766 1.6342 0.7245 0.5236 -0.3169 -0.3171
1305031544.143795 -0.324295074 0.019759245 -0.322530866 -0.073405445 -0.356160849 -0.250692368 0.897170246 1305031544.141900 1.3607 0.5567 1.6478 0.7269 0.5160 -0.3148 -0.3260
1305031544.175829 -0.324815214 0.023322778 -0.343147814 -0.068514116 -0.349458575 -0.246429399 0.901364028 1305031544.171900 1.3651 0.5358 1.6600 0.7316 0.5085 -0.3098 -0.3319
1305031544.207354 -0.329174995 0.030234622 -0.368449211 -0.058111545 -0.337862134 -0.241583973 0.907804728 1305031544.211900 1.3693 0.5064 1.6750 0.7352 0.4980 -0.3021 -0.3468
1305031544.243427 -0.336355329 0.033016339 -0.396227747 -0.052916579 -0.323711187 -0.239683941 0.913762808 1305031544.241900 1.3715 0.4833 1.6849 0.7395 0.4917 -0.2925 -0.3549
1305031544.275540 -0.343856066 0.039289251 -0.421105713 -0.044939667 -0.310175747 -0.240548566 0.918644547 1305031544.271900 1.3724 0.4600 1.6936 0.7419 0.4853 -0.2835 -0.3657
1305031544.307370 -0.355993450 0.046420101 -0.449878693 -0.036598992 -0.294612706 -0.243024722 0.923473239 1305031544.311900 1.3722 0.4277 1.7040 0.7436 0.4802 -0.2689 -0.3796
1305031544.343409 -0.368704796 0.063350350 -0.478535116 -0.028410932 -0.281191975 -0.243924946 0.927698493 1305031544.341900 1.3709 0.4032 1.7106 0.7454 0.4765 -0.2599 -0.3871
1305031544.375459 -0.368742347 0.086126313 -0.500607371 -0.024489028 -0.271766871 -0.243664071 0.930683017 1305031544.371900 1.3682 0.3787 1.7155 0.7491 0.4749 -0.2487 -0.3891
1305031544.407333 -0.386473179 0.101559266 -0.523383975 -0.032002628 -0.256417006 -0.249294788 0.933315694 1305031544.411900 1.3631 0.3462 1.7196 0.7572 0.4753 -0.2295 -0.3847
1305031544.443375 -0.411196500 0.106993064 -0.548486829 -0.038752977 -0.244761363 -0.252791226 0.935246825 1305031544.441900 1.3580 0.3223 1.7223 0.7604 0.4735 -0.2232 -0.3845
1305031544.475427 -0.429425418 0.129836947 -0.569288135 -0.042069707 -0.237990290 -0.253428698 0.936677456 1305031544.471900 1.3528 0.2990 1.7240 0.7645 0.4739 -0.2176 -0.3789
1305031544.507367 -0.454278678 0.136183143 -0.592136860 -0.049748566 -0.233560741 -0.257886082 0.936199367 1305031544.511900 1.3442 0.2686 1.7249 0.7655 0.4780 -0.2137 -0.3740
1305031544.543416 -0.471503198 0.145754129 -0.604286253 -0.053384677 -0.235379428 -0.263114512 0.934086382 1305031544.541900 1.3373 0.2463 1.7246 0.7643 0.4826 -0.2124 -0.3713
1305031544.575497 -0.491918504 0.157886207 -0.620600939 -0.055013023 -0.236884102 -0.266385943 0.932683229 1305031544.572000 1.3302 0.2256 1.7240 0.7627 0.4849 -0.2140 -0.3707
1305031544.607409 -0.492971331 0.186167926 -0.628353238 -0.054139860 -0.242452458 -0.266085178 0.931388378 1305031544.611900 1.3208 0.1993 1.7204 0.7648 0.4884 -0.2132 -0.3619
1305031544.643444 -0.513085365 0.201456696 -0.641210318 -0.063923694 -0.242532894 -0.269478589 0.929770291 1305031544.641900 1.3139 0.1813 1.7164 0.7670 0.4915 -0.2124 -0.3535
1305031544.675586 -0.534213245 0.201238692 -0.645255029 -0.073967092 -0.246619403 -0.271029979 0.927496910 1305031544.671900 1.3064 0.1642 1.7122 0.7657 0.4941 -0.2160 -0.3507
1305031544.707411 -0.544306457 0.220080435 -0.655365169 -0.075432129 -0.252025604 -0.270833611 0.925981760 1305031544.711900 1.2961 0.1430 1.7063 0.7660 0.4969 -0.2198 -0.3436
1305031544.743438 -0.562201917 0.224313498 -0.650126040 -0.081562661 -0.257548928 -0.272314548 0.923504651 1305031544.741800 1.2879 0.1281 1.7021 0.7657 0.4983 -0.2211 -0.3415
1305031544.775418 -0.578908205 0.226531059 -0.652922392 -0.080338687 -0.258810461 -0.274994016 0.922464728 1305031544.771900 1.2789 0.1140 1.6982 0.7626 0.4997 -0.2222 -0.3456
1305031544.807397 -0.589655757 0.241582394 -0.657069623 -0.074771427 -0.259807259 -0.275206625 0.922589123 1305031544.811900 1.2656 0.0966 1.6927 0.7606 0.4994 -0.2230 -0.3498
1305031544.843491 -0.600756228 0.267329633 -0.661785126 -0.071265124 -0.258782744 -0.274994791 0.923217595 1305031544.841900 1.2548 0.0838 1.6881 0.7618 0.5007 -0.2206 -0.3469
1305031544.875360 -0.619798541 0.273174316 -0.661072552 -0.078293219 -0.258119017 -0.279608339 0.921446681 1305031544.871900 1.2430 0.0717 1.6833 0.7626 0.5038 -0.2177 -0.3424
1305031544.907423 -0.633472681 0.281817645 -0.661757767 -0.078774795 -0.255797535 -0.284950346 0.920415938 1305031544.911900 1.2256 0.0562 1.6777 0.7621 0.5071 -0.2115 -0.3425
1305031544.943434 -0.648813248 0.286098093 -0.663860857 -0.081837185 -0.249574944 -0.291249216 0.919885278 1305031544.941900 1.2126 0.0454 1.6740 0.7629 0.5110 -0.2005 -0.3414
1305031544.975537 -0.670217812 0.298842609 -0.664374352 -0.083941147 -0.243787631 -0.297039866 0.919395924 1305031544.972000 1.1990 0.0351 1.6708 0.7635 0.5141 -0.1943 -0.3392
1305031545.007393 -0.687064171 0.296892703 -0.659550846 -0.090034373 -0.243516088 -0.295614034 0.919350922 1305031545.011900 1.1809 0.0229 1.6677 0.7663 0.5117 -0.1935 -0.3370
1305031545.043477 -0.711464643 0.297131598 -0.658662319 -0.092653722 -0.236954123 -0.295556784 0.920822561 1305031545.041900 1.1674 0.0146 1.6664 0.7693 0.5078 -0.1901 -0.3380
1305031545.075369 -0.728638768 0.298035920 -0.656510949 -0.089636192 -0.231901944 -0.291602463 0.923663795 1305031545.071900 1.1540 0.0071 1.6657 0.7706 0.5030 -0.1884 -0.3432
1305031545.107399 -0.740667582 0.305239290 -0.656977296 -0.087092735 -0.226422921 -0.283308268 0.927838326 1305031545.111800 1.1366 -0.0018 1.6643 0.7760 0.4931 -0.1869 -0.3460
1305031545.144171 -0.753568053 0.307678342 -0.656219363 -0.087508567 -0.219255596 -0.272199452 0.932832599 1305031545.141900 1.1240 -0.0077 1.6631 0.7832 0.4811 -0.1852 -0.3478
1305031545.175406 -0.760825276 0.307560235 -0.655331135 -0.088254862 -0.212509319 -0.260688752 0.937599182 1305031545.171900 1.1118 -0.0131 1.6618 0.7908 0.4688 -0.1825 -0.3487
1305031545.207577 -0.775697052 0.309703827 -0.652532101 -0.088994205 -0.202878073 -0.249244258 0.942760706 1305031545.211900 1.0958 -0.0197 1.6598 0.8003 0.4518 -0.1791 -0.3512
1305031545.243483 -0.797005057 0.306024313 -0.648830235 -0.087164439 -0.193672433 -0.236978650 0.948016047 1305031545.241900 1.0840 -0.0244 1.6586 0.8039 0.4399 -0.1802 -0.3575
1305031545.275369 -0.810988188 0.315814793 -0.651436388 -0.079260267 -0.187154412 -0.225204751 0.952876627 1305031545.271900 1.0720 -0.0295 1.6570 0.8074 0.4285 -0.1815 -0.3627
1305031545.307451 -0.823681235 0.322350562 -0.648727357 -0.077548370 -0.181697726 -0.214869916 0.956453383 1305031545.311900 1.0555 -0.0362 1.6542 0.8136 0.4157 -0.1814 -0.3639
1305031545.343494 -0.836157501 0.317787945 -0.643813252 -0.078742526 -0.176498756 -0.204849318 0.959523082 1305031545.341900 1.0428 -0.0413 1.6526 0.8176 0.4052 -0.1804 -0.3672
1305031545.375545 -0.853310347 0.316042989 -0.639135301 -0.076436408 -0.169007257 -0.192925304 0.963521600 1305031545.371900 1.0304 -0.0461 1.6518 0.8221 0.3933 -0.1796 -0.3704
1305031545.407452 -0.874697745 0.317640305 -0.637432337 -0.070468687 -0.162589818 -0.181952596 0.967208326 1305031545.411800 1.0135 -0.0520 1.6512 0.8248 0.3782 -0.1836 -0.3782
1305031545.444180 -0.886911452 0.313298106 -0.639686942 -0.065004595 -0.160660192 -0.171101630 0.969890177 1305031545.441900 1.0009 -0.0561 1.6513 0.8255 0.3699 -0.1863 -0.3833
1305031545.475423 -0.905291140 0.296409756 -0.633331060 -0.059877038 -0.158485740 -0.160531029 0.972382009 1305031545.471900 0.9886 -0.0599 1.6519 0.8240 0.3605 -0.1906 -0.3933
1305031545.507394 -0.915389955 0.310957670 -0.634614110 -0.038708638 -0.159511805 -0.152018532 0.974652767 1305031545.511800 0.9723 -0.0644 1.6526 0.8200 0.3498 -0.1985 -0.4074
1305031545.543418 -0.926781833 0.300550938 -0.631470203 -0.031722408 -0.162174836 -0.142174989 0.975950420 1305031545.541900 0.9601 -0.0678 1.6527 0.8167 0.3442 -0.2042 -0.4158
1305031545.578078 -0.941030085 0.302477956 -0.632803679 -0.016745908 -0.167308226 -0.140735641 0.975664377 1305031545.581900 0.9439 -0.0730 1.6521 0.8082 0.3439 -0.2128 -0.4281
1305031545.607417 -0.958786428 0.309266388 -0.634283662 -0.005518550 -0.171974912 -0.140413284 0.975027323 1305031545.611900 0.9325 -0.0769 1.6505 0.8037 0.3440 -0.2194 -0.4332
1305031545.643463 -0.971941531 0.311215401 -0.625996351 0.005261570 -0.177367032 -0.140286848 0.974080563 1305031545.641900 0.9218 -0.0805 1.6486 0.7977 0.3433 -0.2254 -0.4416
1305031545.675289 -0.981105447 0.303551197 -0.618971765 0.016415834 -0.182207465 -0.142161235 0.972790360 1305031545.672100 0.9119 -0.0847 1.6461 0.7911 0.3435 -0.2278 -0.4519
1305031545.707398 -0.985777617 0.319570988 -0.616668284 0.035953835 -0.185696319 -0.143202424 0.971451104 1305031545.711900 0.8989 -0.0892 1.6410 0.7817 0.3420 -0.2318 -0.4671
1305031545.743570 -0.994036734 0.339825362 -0.619215250 0.043110058 -0.184341520 -0.143804520 0.971328974 1305031545.742000 0.8891 -0.0927 1.6349 0.7817 0.3417 -0.2316 -0.4675
1305031545.775452 -1.008792162 0.348843127 -0.617261469 0.043981537 -0.185309321 -0.148192868 0.970445752 1305031545.771800 0.8794 -0.0964 1.6277 0.7799 0.3451 -0.2323 -0.4676
1305031545.807404 -1.017094016 0.363836795 -0.610341728 0.042971130 -0.187454849 -0.149913028 0.969814539 1305031545.811800 0.8668 -0.1017 1.6162 0.7805 0.3491 -0.2321 -0.4637
1305031545.843376 -1.015746951 0.384224027 -0.597564757 0.040337745 -0.189155236 -0.149123102 0.969719291 1305031545.841900 0.8581 -0.1055 1.6063 0.7837 0.3502 -0.2290 -0.4591
1305031545.875537 -1.020460725 0.393541723 -0.591298938 0.030206559 -0.183203965 -0.150770113 0.970974863 1305031545.871900 0.8502 -0.1090 1.5954 0.7891 0.3506 -0.2217 -0.4530
1305031545.907389 -1.032172799 0.404498816 -0.585110068 0.022949532 -0.175226331 -0.154789075 0.972013056 1305031545.911800 0.8410 -0.1147 1.5804 0.7946 0.3515 -0.2115 -0.4476
1305031545.943457 -1.029512048 0.419103324 -0.581444979 0.011849710 -0.171430603 -0.157338798 0.972479105 1305031545.941900 0.8355 -0.1192 1.5682 0.8008 0.3528 -0.2037 -0.4391
1305031545.975621 -1.034663200 0.428941101 -0.573612571 -0.000687468 -0.164707407 -0.157783851 0.973640203 1305031545.971900 0.8312 -0.1237 1.5559 0.8077 0.3512 -0.1960 -0.4311
1305031546.007516 -1.042177558 0.450212479 -0.575800180 -0.009769781 -0.157327563 -0.160005048 0.974449039 1305031546.011900 0.8267 -0.1296 1.5391 0.8153 0.3516 -0.1884 -0.4197
1305031546.043769 -1.036182284 0.464607954 -0.563580990 -0.025006190 -0.152651861 -0.160986036 0.974759221 1305031546.041900 0.8255 -0.1338 1.5263 0.8240 0.3493 -0.1785 -0.4088
1305031546.075414 -1.033570170 0.477972031 -0.557384670 -0.039435860 -0.140094146 -0.159591570 0.976395905 1305031546.071900 0.8256 -0.1378 1.5139 0.8335 0.3441 -0.1655 -0.3993
1305031546.107395 -1.029393673 0.492431819 -0.554459393 -0.047873456 -0.130461067 -0.158340931 0.977556229 1305031546.111900 0.8271 -0.1420 1.4985 0.8408 0.3395 -0.1539 -0.3926
1305031546.143502 -1.028340936 0.505542159 -0.552153826 -0.055414032 -0.118261471 -0.155959934 0.979091406 1305031546.141900 0.8294 -0.1445 1.4875 0.8475 0.3329 -0.1451 -0.3871
1305031546.175952 -1.030930519 0.508714318 -0.546573281 -0.067375802 -0.107248776 -0.147529036 0.980914533 1305031546.172000 0.8322 -0.1466 1.4764 0.8531 0.3277 -0.1387 -0.3816
1305031546.207500 -1.024528623 0.517454207 -0.542282641 -0.077759199 -0.098568663 -0.142390266 0.981816053 1305031546.212000 0.8371 -0.1484 1.4616 0.8619 0.3168 -0.1294 -0.3742
1305031546.243551 -1.023211718 0.520915508 -0.536803424 -0.084928177 -0.086161926 -0.136442930 0.983232796 1305031546.242000 0.8413 -0.1490 1.4509 0.8664 0.3073 -0.1231 -0.3738
1305031546.276098 -1.018564939 0.539996207 -0.534515381 -0.082185738 -0.075569794 -0.128385767 0.985419631 1305031546.272000 0.8462 -0.1496 1.4395 0.8698 0.2977 -0.1193 -0.3749
1305031546.308110 -1.010900617 0.550528944 -0.528959513 -0.090218984 -0.066594698 -0.117502101 0.986721337 1305031546.312000 0.8532 -0.1506 1.4240 0.8787 0.2832 -0.1123 -0.3675
1305031546.343919 -1.014521241 0.556670666 -0.524246275 -0.094354831 -0.053942565 -0.109825686 0.987990737 1305031546.342000 0.8582 -0.1509 1.4127 0.8815 0.2737 -0.1105 -0.3686
1305031546.376056 -1.012071252 0.569871247 -0.519335747 -0.092766643 -0.048395433 -0.101247221 0.989343882 1305031546.372100 0.8629 -0.1514 1.4014 0.8843 0.2649 -0.1117 -0.3680
1305031546.407659 -1.003891230 0.578038037 -0.514469981 -0.095107846 -0.046558440 -0.090958118 0.990208805 1305031546.412100 0.8684 -0.1517 1.3859 0.8880 0.2543 -0.1127 -0.3662
1305031546.443968 -1.006876349 0.587401628 -0.507140934 -0.093904831 -0.041006159 -0.084594145 0.991132796 1305031546.442100 0.8721 -0.1523 1.3745 0.8884 0.2476 -0.1156 -0.3689
1305031546.475996 -0.996109128 0.606940567 -0.504759967 -0.092348449 -0.041479517 -0.078999028 0.991720915 1305031546.472100 0.8752 -0.1531 1.3625 0.8915 0.2427 -0.1146 -0.3650
1305031546.507967 -0.994153321 0.611241043 -0.496860325 -0.097532190 -0.037081897 -0.074150644 0.991773188 1305031546.512100 0.8793 -0.1544 1.3475 0.8932 0.2362 -0.1136 -0.3653
1305031546.544068 -0.989314735 0.627403915 -0.493148655 -0.093061380 -0.035366114 -0.069693960 0.992588341 1305031546.542100 0.8817 -0.1557 1.3363 0.8938 0.2319 -0.1144 -0.3665
1305031546.576412 -0.987078428 0.637881339 -0.490572333 -0.098057151 -0.031207165 -0.065670043 0.992521226 1305031546.572100 0.8844 -0.1572 1.3254 0.8968 0.2294 -0.1110 -0.3617
1305031546.607717 -0.985495627 0.648996294 -0.485175341 -0.104153536 -0.028164549 -0.062237393 0.992212296 1305031546.612100 0.8871 -0.1587 1.3107 0.9011 0.2245 -0.1093 -0.3545
1305031546.644200 -0.980976045 0.661606312 -0.480350435 -0.109906785 -0.025553485 -0.059289202 0.991842866 1305031546.642200 0.8890 -0.1594 1.3001 0.9047 0.2220 -0.1058 -0.3478
1305031546.676003 -0.979658186 0.668606997 -0.473185062 -0.117995255 -0.021227345 -0.058345407 0.991071284 1305031546.672200 0.8903 -0.1596 1.2899 0.9069 0.2203 -0.1025 -0.3443
1305031546.707934 -0.974887013 0.675395727 -0.468508154 -0.124167100 -0.018283943 -0.056145288 0.990502834 1305031546.712200 0.8922 -0.1592 1.2775 0.9106 0.2168 -0.0967 -0.3383
1305031546.743887 -0.973686397 0.685157299 -0.463010907 -0.131787583 -0.011771018 -0.056698982 0.989585102 1305031546.742200 0.8929 -0.1587 1.2684 0.9146 0.2162 -0.0902 -0.3295
1305031546.775864 -0.975636601 0.691571474 -0.455485851 -0.140392944 -0.006230631 -0.058326945 0.988356709 1305031546.772300 0.8931 -0.1577 1.2604 0.9164 0.2172 -0.0867 -0.3248
1305031546.807996 -0.973160028 0.695711017 -0.449681729 -0.144233882 -0.004771988 -0.058515519 0.987800479 1305031546.812200 0.8929 -0.1559 1.2513 0.9175 0.2168 -0.0842 -0.3226
1305031546.844079 -0.972163498 0.700159490 -0.445479959 -0.147190124 -0.005115082 -0.057700932 0.987410486 1305031546.842300 0.8927 -0.1550 1.2453 0.9185 0.2175 -0.0850 -0.3192
1305031546.876064 -0.970690489 0.699782610 -0.439850301 -0.151563972 -0.008172899 -0.059012938 0.986650407 1305031546.872400 0.8921 -0.1538 1.2403 0.9181 0.2194 -0.0860 -0.3186
1305031546.907783 -0.970115304 0.699011922 -0.434674412 -0.150987342 -0.008861817 -0.060312528 0.986654282 1305031546.912300 0.8911 -0.1521 1.2352 0.9162 0.2204 -0.0864 -0.3234
1305031546.943858 -0.971781909 0.705614865 -0.432511747 -0.144331127 -0.008444622 -0.062622145 0.987509847 1305031546.942300 0.8902 -0.1509 1.2318 0.9147 0.2226 -0.0870 -0.3260
1305031546.975884 -0.973060191 0.706883013 -0.429386258 -0.145612717 -0.009609468 -0.064460464 0.987192690 1305031546.972400 0.8890 -0.1500 1.2285 0.9145 0.2257 -0.0872 -0.3243
1305031547.011984 -0.973977268 0.705084682 -0.425893694 -0.146080330 -0.012293681 -0.067066759 0.986920178 1305031547.012300 0.8877 -0.1485 1.2255 0.9126 0.2275 -0.0902 -0.3277
1305031547.044214 -0.969248772 0.709507227 -0.423717022 -0.141931981 -0.015329896 -0.068335988 0.987395823 1305031547.042400 0.8873 -0.1475 1.2236 0.9123 0.2285 -0.0884 -0.3281
1305031547.076346 -0.969141841 0.705416739 -0.420951128 -0.142568424 -0.012756718 -0.071352549 0.987127304 1305031547.072400 0.8874 -0.1462 1.2227 0.9111 0.2290 -0.0858 -0.3317
1305031547.111991 -0.969205260 0.702976882 -0.420145452 -0.139350116 -0.010200501 -0.072448380 0.987536669 1305031547.112400 0.8877 -0.1451 1.2227 0.9096 0.2288 -0.0838 -0.3366
1305031547.144071 -0.970228970 0.703889012 -0.420595855 -0.133380279 -0.007748643 -0.073243111 0.988324404 1305031547.142400 0.8881 -0.1447 1.2234 0.9081 0.2285 -0.0838 -0.3406
1305031547.175909 -0.971397400 0.704943478 -0.422101766 -0.130354390 -0.007599273 -0.070975937 0.988894522 1305031547.172400 0.8885 -0.1447 1.2248 0.9074 0.2278 -0.0862 -0.3423
1305031547.211964 -0.972041070 0.701468408 -0.422861338 -0.130787611 -0.010874991 -0.070190683 0.988862753 1305031547.212400 0.8893 -0.1450 1.2272 0.9068 0.2285 -0.0906 -0.3425
1305031547.244113 -0.971181035 0.695812881 -0.424771667 -0.130435303 -0.013295597 -0.070769772 0.988838434 1305031547.242500 0.8899 -0.1451 1.2297 0.9055 0.2287 -0.0919 -0.3453
1305031547.276546 -0.971028864 0.697565377 -0.427125096 -0.125065759 -0.014118688 -0.071175680 0.989491403 1305031547.272500 0.8904 -0.1455 1.2320 0.9043 0.2296 -0.0927 -0.3479
1305031547.312261 -0.971129596 0.694582820 -0.428963840 -0.124308571 -0.015723296 -0.071646489 0.989528596 1305031547.312500 0.8912 -0.1463 1.2354 0.9036 0.2304 -0.0946 -0.3487
1305031547.344192 -0.971808732 0.696023524 -0.431559682 -0.120676666 -0.017302411 -0.070783302 0.990013897 1305031547.342500 0.8917 -0.1467 1.2377 0.9026 0.2307 -0.0972 -0.3503
1305031547.376753 -0.972948790 0.692880690 -0.433144748 -0.121699139 -0.020406267 -0.069425315 0.989925742 1305031547.372600 0.8921 -0.1474 1.2396 0.9027 0.2312 -0.1007 -0.3487
1305031547.412260 -0.971561193 0.691772044 -0.434226394 -0.120271191 -0.024528606 -0.067930862 0.990110397 1305031547.412500 0.8920 -0.1477 1.2420 0.9020 0.2318 -0.1040 -0.3490
1305031547.444472 -0.969606876 0.689487159 -0.435226619 -0.119148292 -0.027779723 -0.068744808 0.990104079 1305031547.442600 0.8921 -0.1475 1.2435 0.9008 0.2327 -0.1053 -0.3511
1305031547.476347 -0.970041931 0.689112425 -0.436202466 -0.115484737 -0.028181925 -0.070158444 0.990427613 1305031547.472600 0.8922 -0.1473 1.2447 0.8999 0.2332 -0.1058 -0.3530
1305031547.512114 -0.969141722 0.690587997 -0.436644912 -0.112998858 -0.028315512 -0.070585296 0.990680158 1305031547.512600 0.8920 -0.1464 1.2457 0.8999 0.2336 -0.1049 -0.3529
1305031547.544015 -0.969343126 0.685919464 -0.435732603 -0.115559071 -0.027669447 -0.071633816 0.990327775 1305031547.542600 0.8918 -0.1458 1.2463 0.8997 0.2338 -0.1044 -0.3535
1305031547.576437 -0.969174564 0.686703444 -0.435318053 -0.112849854 -0.027105195 -0.070552461 0.990733325 1305031547.572800 0.8918 -0.1446 1.2464 0.8993 0.2324 -0.1049 -0.3553
1305031547.612296 -0.970078647 0.689395785 -0.435169339 -0.112708598 -0.026355622 -0.070317492 0.990786374 1305031547.612600 0.8919 -0.1431 1.2459 0.9003 0.2329 -0.1051 -0.3523
1305031547.644160 -0.968304217 0.684383154 -0.432779491 -0.115552612 -0.027641958 -0.069583893 0.990475416 1305031547.642700 0.8920 -0.1419 1.2458 0.8996 0.2314 -0.1062 -0.3549
1305031547.677287 -0.966275394 0.690610170 -0.433439136 -0.111170650 -0.027089374 -0.068664201 0.991056204 1305031547.672700 0.8922 -0.1407 1.2451 0.9005 0.2309 -0.1046 -0.3533
1305031547.712338 -0.964709222 0.686679959 -0.430968702 -0.118181951 -0.026665349 -0.069269933 0.990213931 1305031547.712700 0.8925 -0.1396 1.2441 0.9020 0.2315 -0.1028 -0.3497
1305031547.744332 -0.963581026 0.684470177 -0.429666400 -0.117340922 -0.025876738 -0.069295891 0.990333080 1305031547.742800 0.8929 -0.1386 1.2441 0.9011 0.2307 -0.1025 -0.3526
1305031547.776390 -0.964229822 0.688230872 -0.429996789 -0.114284322 -0.024022026 -0.070344165 0.990663290 1305031547.772700 0.8935 -0.1379 1.2440 0.9008 0.2318 -0.1015 -0.3529
1305031547.812317 -0.964506626 0.684349477 -0.429410160 -0.117394648 -0.022055248 -0.071717598 0.990246713 1305031547.812700 0.8942 -0.1371 1.2441 0.9011 0.2310 -0.0996 -0.3532
1305031547.844564 -0.962979019 0.686277032 -0.429381162 -0.114744045 -0.021526016 -0.070772044 0.990637004 1305031547.842800 0.8946 -0.1365 1.2442 0.9008 0.2305 -0.0994 -0.3543
1305031547.876362 -0.963006616 0.688939631 -0.429479182 -0.113952808 -0.021306587 -0.070929334 0.990721881 1305031547.872800 0.8950 -0.1360 1.2442 0.9016 0.2311 -0.0993 -0.3520
1305031547.912744 -0.960898936 0.685296535 -0.428291798 -0.116005875 -0.021983700 -0.069795489 0.990549266 1305031547.912800 0.8956 -0.1352 1.2445 0.9016 0.2297 -0.0992 -0.3529
1305031547.944304 -0.960632503 0.685537279 -0.428972363 -0.115375742 -0.021099383 -0.069957919 0.990630627 1305031547.943100 0.8959 -0.1347 1.2447 0.9019 0.2297 -0.0988 -0.3522

CMakeLists.txt:

cmake_minimum_required(VERSION 3.0)

project(E2RT)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE "Release")

#添加头文件
include_directories( "/usr/include/eigen3")
find_package(Sophus REQUIRED)
find_package(Pangolin REQUIRED)
find_package(OpenCV REQUIRED)
#添加头文件
include_directories( ${OpenCV_INCLUDE_DIRS})
include_directories(${Pangolin_INCLUDE_DIRS})
include_directories(${Sophus_INCLUDE_DIRS})


add_executable(useICP icp.cpp)

#链接OpenCV库
target_link_libraries(useICP ${Sophus_LIBRARIES} ${Pangolin_LIBRARIES} ${OpenCV_LIBS})

运行结果如下:
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/271508.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SM2259XT Intel N18混贴3CH开卡经验分享,SM2259XT2、SM2258XT量产固件参考教程

收了条Intel的512G不认盘的ssd&#xff0c;拆出来两颗29F02T2AMCQH1&#xff0c;这个应该是正品&#xff0c;ID也没问题。然后&#xff0c;还有个山寨的256G SATA&#xff0c;主控2259XT&#xff0c;两个颗粒丝印29F1TB2ALCTH2&#xff0c;但是&#xff0c;ID与CQH1一样&#x…

2024年科技盛宴“上海智博会·上海软博会”招商工作接近尾声

2024年上海智博会和上海软博会即将于3月份在上海跨国采购会展中心盛大召开。作为全球科技和软件行业的盛会&#xff0c;这两大展会汇集了业界顶尖的企业、创新技术和前瞻思想&#xff0c;吸引了来自世界各地的专业人士和参展商。 今年的展会将一如既往地为大家呈现最前沿的科技…

[SWPUCTF 2021 新生赛]error

[SWPUCTF 2021 新生赛]error wp 信息搜集 查看页面&#xff1a; 输个单引号会报错&#xff1a; 显然是 SQL 注入。 提示看看有没有什么捷径&#xff0c;你要说捷径的话&#xff0c;sqlmap&#xff1f;你不说我也会用 sqlmap 先跑一下&#xff0c;哈哈。 sqlmap 的使用 先简…

阿里云S5服务器4核8G和轻量选哪个比较好?

腾讯云4核8G服务器优惠价格表&#xff0c;云服务器CVM标准型S5实例4核8G配置价格15个月1437.3元&#xff0c;5年6490.44元&#xff0c;轻量应用服务器4核8G12M带宽一年446元、529元15个月&#xff0c;阿腾云atengyun.com分享腾讯云4核8G服务器详细配置、优惠价格及限制条件&…

氢燃料电池商用车系统架构开发与集成技术

一、国家及不同地区对氢能发展支持政策 近三年国家对氢能及燃料电池产业的支持政策 近年来22个省市的发展规划中提到了大力支持氢能源产业发展 二、燃料电池客车架构分解及国内外已有车型 未来燃料电池客车发展方向 未来燃料电池客车新增加的燃料电池堆产业链及供应商 国内外差…

【三维重建】3D Gaussian Splatting:实时的神经场渲染

文章目录 摘要一、前言二、相关工作1.传统的场景重建与渲染2.神经渲染和辐射场3.基于点的渲染和辐射场4.*什么是 Tile-based rasterizer (快速光栅化) 三、OVERVIEW四、可微的三维高斯 Splatting五、三维高斯 自适应密度控制的优化1.优化2.高斯的自适应控制 六、高斯分布的快速…

a = a + b 与 a += b 的区别

隐式的将加操作的结果类型强制转换为持有结果的类型。如果两个整型相加&#xff0c;如 byte、short 或者 int&#xff0c;首先会将它们提升到 int 类型&#xff0c;然后在执行加法操作。 byte a 127; byte b 127; b a b; // error : cannot convert from int to byte b a…

c语言:去除最高分最低分,求平均值|练习题

一、题目 有10个裁判评分&#xff0c;去除最高分和最低分&#xff0c;求运动员的平均分。 如图&#xff1a; 二、思路分析 1、设置一个数组变量&#xff0c;用冒泡排序法排序 2、数组的首位和最后一位&#xff0c;就是最低分和最高分 3、数组的第二到n-1个&#xff0c;就是符合…

【力扣题解】P144-二叉树的前序遍历-Java题解

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【力扣题解】 文章目录 【力扣题解】P144-二叉树的前序遍历-Java题解&#x1f30f;题目描述&#x1f4a1;题解&#x1f30…

EEPROM

芯片地址 前四位固定为1010&#xff0c;A2~A0为由管脚电平。AT24CXX EEPROM Board模块中默认为接地。A2~A0为000&#xff0c;最后一位表示读写操作。所以AT24Cxx的读地址为0xA1,写地址为0xA0。 写24C02的时候&#xff0c;从器件地址为10100000&#xff08;0xA0&#xff09;&am…

C单片机数据类型

C语言数据类型 关键字位数表示范围stdint关键字ST关键字unsigned char80 ~ 255uint8_tu8char8-128 ~ 127int8_ts8unsigned short160 ~ 65535uint16_tu16short16-32768 ~ 32767int16_ts16unsigned int320 ~ 4294967295uint32_tu32int32-2147483648 ~ 2147483647int32_ts32unsig…

Linux的安装及管理程序

一、如何在linux安装卸载软件 1. 编译安装 灵活性较高 难度较大 可以安装较新的版本 2. rpm安装&#xff08;redhat&#xff09; linux 包安装 查软件信息&#xff1a;是否安装&#xff0c;文件列表 rpm 软件名 3. yum yum是RPM升级版本&#xff0c;解决rpm的弊端 安装软件 首…

引用jquery.js的html5基础页面模板

本专栏是汇集了一些HTML常常被遗忘的知识&#xff0c;这里算是温故而知新&#xff0c;往往这些零碎的知识点&#xff0c;在你开发中能起到炸惊效果。我们每个人都没有过目不忘&#xff0c;过久不忘的本事&#xff0c;就让这一点点知识慢慢渗透你的脑海。 本专栏的风格是力求简洁…

MR实战:学生信息排序

文章目录 一、实战概述二、提出任务三、完成任务&#xff08;一&#xff09;准备数据1、在虚拟机上创建文本文件2、上传文件到HDFS指定目录 &#xff08;二&#xff09;实现步骤1、创建Maven项目2、添加相关依赖3、创建日志属性文件4、创建学生实体类5、创建学生映射器类5、创建…

OPNET Modeler帮助文档的打开方式

前面有篇文章修改OPNET帮助文档的默认打开浏览器 & 给Edge浏览器配置IE Tab插件已经提到了打开OPNET Modeler打开帮助文档的方法&#xff0c;有时候打开时会显示如下。 界面中没有什么内容加载出来&#xff01;我是在Google浏览器中打开的&#xff0c;其他的浏览器也是一样…

为何多参数遥测终端机成为了当今智能化监测领域的核心工具?

近年来&#xff0c;政府出台了一系列政策&#xff0c;加强了水文/水资源监测和管理的力度&#xff0c;推动了智能化监测技术的发展。根据国家统计局的数据&#xff0c;我国水文/水资源监测站点数量不断增加&#xff0c;监测范围不断扩大&#xff0c;监测数据的质量和精度也不断…

深入了解队列:探索FIFO数据结构及队列

之前介绍了栈&#xff1a;探索栈数据结构&#xff1a;深入了解其实用与实现&#xff08;c语言实现栈&#xff09; 那就快马加鞭来进行队列内容的梳理。队列和栈有着截然不同的工作方式&#xff0c;队列遵循先进先出&#xff08;FIFO&#xff09;的原则&#xff0c;在许多场景下…

共享目录防火墙

导语&#xff1a; 为什么需要配置文件夹共享功能&#xff1f; 我们在工作和生活中经常有需要将自己的文件复制给他人或者将他人的文件复制过来的需求。 有时候我们使用u盘&#xff0c;有时候我们使用qq或者飞秋等软件&#xff0c;但是u盘和软件并不是万能的&#xff0c;比如没…

(10)Linux冯诺依曼结构操作系统的再次理解

&#x1f4ad; 前言&#xff1a;本章我们首先会明确冯诺依曼体系结构的概念&#xff0c;旨在帮助大家理解体系结构在硬件角度去理解数据流走向的问题。理解完之后我们再去谈操作系统、更多有关操作系统的细节&#xff0c;着重谈谈操作系统概念与定位、操作系统是如何去做管理的…

聚观早报 |吉利银河E8将上市;三星Galaxy S24将登场

聚观早报每日整理最值得关注的行业重点事件&#xff0c;帮助大家及时了解最新行业动态&#xff0c;每日读报&#xff0c;就读聚观365资讯简报。 整理丨Cutie 12月26日消息 吉利银河E8将上市 三星Galaxy S24将登场 哪吒L内饰曝光 苹果首款MR头显正量产 IEEE全球研究报告 …