【Linux系统编程】进程状态

介绍

        进程的状态指的是进程在执行过程中所处的状态。进程的状态随着进程的执行和外界条件的变化而转换。我们可用 kill 命令来进程控制进程的状态。

        kill中的 kill -l 指令用于查看系统中定义的所有信号及其对应的编号。这些信号可以用于 kill 命令来向进程发送特定的信号控制其状态。例如,kill - 9 命令会向进程发送 SIGKILL 信号,强制终止进程,kill -19 命令会向进程发送 SIGSTOP 信号,使进程进入暂停状态,如同 Ctrl+Z 组合键的效果,kill -18 命令用于向进程发送 SIGCONT 信号,使进程从暂停状态恢复执行,如同 Ctrl+C 组合键的效果。


系统下的进程主流状态

        进程在系统中主流的四个主要状态:运行状态、排队状态、阻塞状态、挂起状态。

运行状态

        首先,要说明,系统内部的所有进程不是一次性执行完毕的,而是在内部排队等待某种资源。

        进程只要在运行队列里或正在被CUP正在执行时,此进程就处于运行状态。部分教材中可能会说明有创建状态、就绪状态、阻塞状态等,这几种状态其实都是跟进程放入运行队列有关。

排队状态

        由于大部分计算机中只有一个CUP,而一个CUP一次只能运行一个进程队列,所以在Linux系统内核中,所有进入状态的进程必须依次“ 排队 ”等待,这里的“ 排队 ”并不是进程自己在“ 排队 ”等待,而是进程的 tast_struct 结构体在进行“ 排队”等待被CUP执行。

        其实不光是等待CPU执行时需要排队,在进程等待某种资源时,也会处于排队状态。如外设等。这里的排队等待,不像一般数据结构中的排队等待,而是将 task_struct 结构体嵌入到运行队列中,系统通过地址偏移量来进行访问里面的属性数据。具体实现如下:

        总的来说,进程的排队状态是指进程在等待被执行或等待获取资源时所处的一种状态。在排队状态下,进程会被放入相应的队列中,等待其前面的进程释放资源或完成其任务,当多个进程同时请求系统资源时,操作系统会根据一定的调度算法将这些进程按照一定的顺序排列,以便按照一定的优先级逐个分配资源。

阻塞状态

        阻塞状态是进程的执行过程中一种暂停状态,此时进程放弃处理机而处于暂停状态。当进程处于阻塞状态时会排成一个队列,形成这种情况通常是因为进程在等待某个事件的发生。如,当我们的进程在进行等待软硬件资源的时候,资源如果没有就绪,我们的进程task_struct 只能将自己设置为阻塞状态,并将自己的pcb连入等待的资源提供的等待队列。

挂起状态

        进程的挂起状态是指一个进程由于某些原因暂时不能执行,而被系统挂起来,等待以后执行。在这种状态下,进程不会占用内存空间,也不会被调度执行,进程只是被存储在磁盘上。这种状态通常发生在系统资源不足或者进程等待某些事件时发生。当条件允许时,被挂起的进程就会被操作系统再次调回内存,重新进入等待被执行的状态,即就绪态。


前台进程与后台进程   

        前台进程和后台进程是操作系统中的两种进程类型,它们在运行状态和行为上存在显著差异。一般情况下,进程中的可执行程序直接运行是前台进程,当在执行可执行程序时,在后面加上“ & ”符号,就变成了后台进程。前台进程和后台进程在进程状态符观察出。当查看进程状态时,若状态符后面有“ + ”号,此进程表示前台进程,若状态符后面没有“ + ”号,此进程表示后台进程。    

        通常情况下,前台进程可以直接使用键盘上的 Ctrl+C 来终止,但后台进程则需要使用特定的命令,如“ kill -9 [PID] ”来终止。因此,当我们设为后台进程时,用户必须要获取该进程的PID。


Linux内核源代码的进程状态

        在了解进程状态时,首先要明白系统内部定义的进程状态。在Linux内核中定义状态的源代码如下:

/*
* The task state array is a strange "bitmap" of
* reasons to sleep. Thus "running" is zero, and
* you can test for combinations of others with
* simple bit tests.
*/
static const char* const task_state_array[] = {  //下面的大写首字母代表状态
"R (running)", /* 0 */
"S (sleeping)", /* 1 */
"D (disk sleep)", /* 2 */
"T (stopped)", /* 4 */
"t (tracing stop)", /* 8 */
"X (dead)", /* 16 */
"Z (zombie)", /* 32 */
};

        R运行状态:表示进程正在处于系统的运行状态,与上面的运行状态效果一样,并不意味着进程一定在运行中,它表明进程要么是在运行中要么在运行队列里。

        S睡眠状态:进程在等待某件事件完成而进入睡眠。这种睡眠状态如同阻塞状态,有时候也叫做可中断睡眠,可直接用键盘进行中断。

        D磁盘休眠状态:这种状态有时候也叫不可中断睡眠状态,它用于资源管理。当进程的PCB指针放入磁盘结构体的队列中时,如果内存紧张,操作系统可能需要终止一些后台进程来缓解内存压力。但是,如果正在写入磁盘的数据很重要,直接终止可能会导致不良后果。此时将进程置于D状态可以确保即使在内存紧张的情况下,操作系统也不会终止它,直到IO操作完成。

        T停止状态:表示进程被暂定,如同 kill -19 命令停止运行进程。此状态也可理解为阻塞状态的分支。

        t停止状态:表示进程处于跟踪状态而暂定,通常用于调试目的。

注意:状态T和状态t都是表示进程被停止,其中,状态T停止是常规控制停止,而状态t停止是因为深入跟踪导致进程停止,通常用于调试。

        X死亡状态:此状态表示进程已经结束,并且可以被回收的状态。当一个进程完全结束执行,并且系统已经回收了其资源时,该进程就会进入X状态,因此,这个状态只是一个返回状态,我们不会在任务列表里看到这个状态。

        Z僵尸状态:表示一个进程已经结束执行,但其父进程还没有读取它的退出状态信息。在这种情况下,该进程会以终止状态保持在进程表中,等待父进程读取其退出状态代码。

        当一个进程退出时,它会将退出信息保存在task_struct中,供父进程或操作系统读取。如果父进程在子进程退出后仍然存在,但没有读取子进程的退出状态信息,子进程就会进入Z状态。处于Z状态的进程不会占用CPU资源,但会占用进程表中的一个槽位和内存,直到其父进程读取了其退出状态信息并对其进行回收,因此,僵尸进程可能会造成内存资源的浪费,有一定的危害。以下代码的子进程就为僵尸进程。

#include <iostream>
#include <unistd.h>
using namespace std;
int main()
{
    pid_t id = fork();
    if (id == 0)  //子进程
    {
        int n = 5;
        while (n)
        {
            cout << "PID: " << getpid() << "   " << "PPID: " << getppid() << endl;
            sleep(1);
            n--;
        }
        exit(0);  //子进程退出
    }
    while (1)  //父进程运行
    {
        cout << "PID: " << getpid() << "   " << "PPID: " << getppid() << endl;
        sleep(1);
    }
    return 0;
}


孤儿进程

        孤儿进程是指一个进程的父进程已经终止,而该进程还在运行。

        由于孤儿进程原有的父进程已不存在,所以,孤儿进程通常由init进程(进程号为1)收养,并由init进程对它们完成状态收集工作。因此,孤儿进程并不会有什么危害。以下是孤儿进程的代码

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{
    pid_t id = fork();
    if (id < 0) 
    {
        perror("fork");
        return 1;
    }
    else if (id == 0)   //子进程
    {
        cout << "I am child, pid : " << getpid() << endl;
        sleep(5);
    }
    else  //父进程
    {
        cout << "I am child, pid : " << getpid() << endl;
        sleep(5);
        exit(0);
    }
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/271274.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

地图服务器GeoServer的安装与配置

文章目录 1.安装配置Java2.安装配置Tomcat3 安装配置GeoServer GeoServer提供了多种安装配置方式&#xff0c;但是本质上GeoServer是一个基于Java Web的项目&#xff0c;因此我们理论上只需要安装Java&#xff0c;并且将其放置在一个Web服务器&#xff08;例如Apache Tomcat&am…

BioXCell--RecombiMAb anti-mouse VEGFR-2

DC101-CP132单克隆抗体是原始DC101单克隆的重组嵌合型抗体。可变结构域序列与原始DC101相同&#xff0c;但是恒定区序列已经从大鼠IgG1变为小鼠IgG2a。DC101-CP132单克隆抗体像原始大鼠IgG1抗体一样&#xff0c;不包含Fc突变。 DC101-CP132单克隆抗体能与小鼠VEGFR-2(血管内皮生…

等保测评里面,登录后,强制检测弱口令的处理流程

一张图脑补&#xff1a; 密码强度检查工具&#xff1a;https://blog.csdn.net/qq_37148232/article/details/135017666?spm1001.2014.3001.5501

目标检测-Two Stage-RCNN

文章目录 前言一、R-CNN的网络结构及步骤二、RCNN的创新点候选区域法特征提取-CNN网络 总结 前言 在前文&#xff1a;目标检测之序章-类别、必读论文和算法对比&#xff08;实时更新&#xff09;已经提到传统的目标检测算法的基本流程&#xff1a; 图像预处理 > 寻找候选区…

12.25

led.c #include "led.h" void all_led_init() {RCC_GPIO | (0X3<<4);//时钟使能GPIOE_MODER &(~(0X3<<20));//设置PE10输出GPIOE_MODER | (0X1<<20);//设置PE10为推挽输出GPIOE_OTYPER &(~(0x1<<10));//PE10为低速输出GPIOE_OSPEED…

虚拟机安装centos7系统步骤

1、下载系统镜像文件 下载地址&#xff1a;https://mirrors.aliyun.com/centos/7.9.2009/isos/x86_64/CentOS-7-x86_64-DVD-2207-02.iso 2、鼠标右键点击虚拟机-->设置-->CD/DVDD-->使用ISO映像文件-->点击浏览&#xff0c;选择文件&#xff0c;而后保存设置 3、点…

蓝桥杯c/c++程序设计——冶炼金属

冶炼金属 问题描述 小蓝有一个神奇的炉子用于将普通金属 O 冶炼成为一种特殊金属 X。这个炉子有一个称作转换率的属性 V&#xff0c;V 是一个正整数&#xff0c;这意味着消耗 V 个普通金属 O 恰好可以冶炼出一个特殊金属 X&#xff0c;当普通金属 O 的数目不足 V 时&#xff0…

【STM32单片机】汉诺塔游戏

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用STM32F103C8T6单片机控制器&#xff0c;IIC OLED液晶、按键等。 主要功能&#xff1a; 系统运行后&#xff0c;OLED显示游戏画面&#xff0c;可通过K1或K3键选择关卡&#xff0c;K2键开始。 二…

开源分布式搜索引擎ElasticSearch结合内网穿透远程连接

文章目录 前言1. Windows 安装 Cpolar2. 创建Elasticsearch公网连接地址3. 远程连接Elasticsearch4. 设置固定二级子域名 前言 简单几步,结合Cpolar 内网穿透工具实现Java 远程连接操作本地分布式搜索和数据分析引擎Elasticsearch。 Cpolar内网穿透提供了更高的安全性和隐私保…

麒麟V10arm桌面版的安装包在麒麟V10服务器版安装

安装过后&#xff0c;可执行程序可能运行不了&#xff0c;看起来就像没识别为可执行程序。在终端运行&#xff0c;会发现其实是缺少了某些库&#xff0c;比如libicui18n.so.66、libicuuc.so.66、libicudata.so.66和libm.so.6库版本不对。 报这个错&#xff1a;error while loa…

如何使用 pnpm 实现前端 Monorepo项目管理

前言 随着软件开发项目变得越来越庞大和复杂&#xff0c;如何有效管理和维护代码库成为了一个重要的问题。一种流行的解决方案是 Monorepo&#xff0c;也就是在一个版本控制系统中管理所有的项目代码。 什么是 Monorepo Monorepo 是一种项目代码管理方式&#xff0c;指单个仓…

internet download manager 6.42怎么删除卸载,2024最新idm卸载不干净怎么解决

internet download manager 6.42简称为IDM&#xff0c;这是一款非常好用的下载软件&#xff0c;很多小伙伴都在使用。如果后续我们不再需要使用该软件&#xff0c;小伙伴们知道具体该如何将其卸载掉吗&#xff0c;其实卸载方法是非常简单的&#xff0c;只需要进行几个非常简单的…

分布式核心技术之分布式锁

文章目录 为什么要使用分布锁&#xff1f;分布式锁的三种实现方法基于数据库实现分布式锁基于缓存实现分布式锁基于 ZooKeeper 实现分布式锁知识扩展&#xff1a;如何解决分布式锁的羊群效应问题&#xff1f; 三种实现方式对比 分布式互斥&#xff0c;领悟了其“有你没我&#…

绝地反击,不做背锅侠!

那么作为运维人员&#xff0c;如何摆脱以上背黑锅的尴尬局面呢&#xff1f;堡垒机当然是破解此局面的绝杀大招。 1.统一登录入口 提供统一入口&#xff0c;集中管理和分配账户密码、所有运维人员只能登录堡垒机才能访问服务器&#xff0c;梳理“人与服务器”之间的关系&#…

新版Microsoft Edge和google chrome谁才是浏览器的王者?

Microsoft Edge是一款现代化的浏览器&#xff0c;它拥有众多功能和强大的性能&#xff0c;为用户带来更加流畅的浏览体验。 Edge最近推出了分屏功能&#xff0c;支持一个窗口同时显示两个选项卡&#xff0c;这可以大大提高生产力和多任务处理能力。 一、结合平时的使用经历&…

2024 年网络安全展望:未来是什么?

为了建立强大的网络安全计划&#xff0c;组织必须首先了解整体威胁环境不断变化的性质。 人工智能在成为安全团队的帮助之前&#xff0c;将为网络犯罪分子带来巨大的福音。 网络犯罪分子和不良行为者将受益于先进人工智能工具的广泛部署&#xff0c;然后他们的目标才能建立人…

【计算机网络】—— 奈氏准则和香农定理

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 &#x1f4ab;个人格言:"没有罗马,那就自己创造罗马~" 目录 失真 - 信号的变化 ​编辑影像失真的因素&#xff1a; ​编辑信道带宽&#xff1a; 码间串扰…

使用Go语言编写基本的HTTP服务器

你是否曾经想过自己动手编写一个Web服务器&#xff1f;那种可以接收来自全世界的请求&#xff0c;然后回应一些“Hello, World!”之类的消息的服务器&#xff1f;如果你有这个想法&#xff0c;那么Go语言就是你的最佳伙伴。让我们一起踏上这段奇妙的探险之旅吧&#xff01; 首…

Docker部署Nexus Maven私服并实现远程访问Nexus界面

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 1. Docker安装Nexus2. 本地访问Nexus3. Linux安装Cpolar4. 配置Nexus界面公网地址5. 远程访问 Nexus界面6. 固定N…

【HarmonyOS开发】探究Hap与App包的结构与区别

1、Hap与App包的区别 OpenHarmony 可以进行两种形式&#xff08;Hap和App&#xff09;的打包&#xff0c;HAP是用于本地调试的&#xff0c;APP包是用于上架发布的。 根据不同的设备类型&#xff0c;一个APP包可以包含多个HAP包。 下面从两个角度进行分析 1.1 编译构建角度 编…