AIGC:大语言模型LLM的幻觉问题

引言

在使用ChatGPT或者其他大模型时,我们经常会遇到模型答非所问、知识错误、甚至自相矛盾的问题。

虽然大语言模型(LLMs)在各种下游任务中展示出了卓越的能力,在多个领域有广泛应用,但存在着幻觉的问题:即生成与用户输入不符、与先前生成的内容矛盾或与已知世界知识不符的内容。

这种现象对LLMs在现实世界场景中的可靠性构成了重大挑战。在准确率要求非常高的场景下幻觉是不可接受的,比如医疗领域、金融领域等。

目前在LLM幻觉问题上已经有无数的研究,比如关于幻觉的检测、幻觉的评估基准分类、缓解幻觉的方法等。

今天我会结合几篇有关LLM幻觉问题的综述论文,来理解LLM幻觉的分类、检测方法、评估和基准、减轻方法等。

最近的一篇是来自哈尔滨工业大学和华为的研究团队,长达49页,对有关LLM幻觉问题的最新进展来了一个全面而深入的概述。

这篇综述(下文简称:综述1)从LLM幻觉的创新分类方法出发,深入探究了可能导致幻觉的因素,并对检测幻觉的方法和基准进行了概述。

论文链接:https://arxiv.org/abs/2311.05232

另外还有一篇综述(下文简称:综述2),来自腾讯AI实验室和一些国内大学的研究团队,综述提出了LLM幻觉现象的分类法和评估基准,分析旨在减轻LLM幻觉的现有方法,并确定未来研究的潜在方向。

论文链接:https://arxiv.org/pdf/2309.01219.pdf

还有一篇有关幻觉的论文(下文简称:论文1),对各种文本生成任务中的幻觉现象进行了新的分类,从而提供了理论分析、检测方法和改进方法。

论文链接:https://arxiv.org/pdf/2309.06794v1.pdf

1 幻觉的分类

在综述2中,将LLMs幻觉分为三种:输入冲突幻觉上下文冲突幻觉事实冲突幻觉

  • 输入冲突幻觉:是指生成的内容与用户提供的输入不符;

  • 上下文冲突幻觉:是指生成的内容与之前生成的信息相矛盾;

  • 事实冲突幻觉:是指生成的内容与已知的世界知识不符。

图注:3种幻觉的定义

而在最新的综述1中,将LLM幻觉分为两种:事实型幻觉忠实度幻觉

如上图所示,左边是事实型幻觉:当LLM被问到谁是第一个在月球上漫步的人时,LLM编了个人物出来,甚至还说得有模有样。右边是忠实度幻觉:LLM在看到这段新闻后,直接把年份概括错了。

下图是一张更为详细的LLM幻觉种类图,包括更为细致的分类:事实型幻觉包括事实不一致、事实捏造;忠实度幻觉又包括:指令-答案的不一致、文本不一致,以及逻辑不一致。

图注:LLM幻觉种类图

总的来说,结合事实、上下文、输入的不一致,幻觉的定义和分类上是相似的。

结合常见的下游任务,比如机器翻译、问答系统、对话系统、文本摘要、LLM知识图谱和视觉问答系统,论文1总结了典型的幻觉现象,如下表所示:

 2 幻觉的来源

综述2认为产生幻觉的主要原因有预训练数据收集、知识GAP和大模型优化过程三个方面。

最新的综述1也深入探讨LLM产生幻觉的根本原因,主要分为三个关键方面:数据、训练和推理。

结合起来,我们具体来看下幻觉的来源:

2.1 幻觉来自数据

  • 预训练数据:大模型的知识和能力主要来自与预训练数据,如果预训练数据使用了不完整或者过期的数据,那么就很可能导致知识的错误,从而引起幻觉现象。

  • 数据利用:LLMs 往往会捕捉到虚假的相关性,在回忆知识(尤其是长尾信息)和复杂推理场景中表现出困难,从而进一步加剧幻觉。

2.2 幻觉来自训练

  • 预训练阶段:LLMs在这一阶段学习通用表征并捕捉广泛的知识,通常采用基于transformer的架构,在庞大的语料库中进行因果语言建模。但是,固有的架构设计和研究人员所采用的特定训练策略,可能会产生与幻觉相关的问题。

  • 对齐阶段:一般涉及两个主要过程,即监督微调和从人类反馈中强化学习(RLHF)。虽然对齐能显著提高 LLM 响应的质量,但也会带来产生幻觉的风险,主要分为两方面:能力不对齐(Capability Misalignment)和信念不对齐(Belief Misalignment)。

2.3 幻觉来自生成/推理

经过预训练和对齐后,解码在体现 LLM 能力方面发挥着重要作用。然而,解码策略的某些缺陷可能导致 LLM 出现幻觉。综述1深入探讨源于解码过程的潜在原因,并强调两个关键因素:

  • 解码策略固有的随机性(Inherent Sampling Randomness):比如采用采样生成策略(如top-p和top-k)引入的随机性也可能导致幻觉的产生。

  • 不完善的解码表示(Imperfect Decoding Representation):在解码阶段,LLM 使用顶层表示法预测下一个标记。然而,顶层表示法也有其局限性,主要表现在两个方面:上下文关注不足(Insufficient Context Attention)和Softmax瓶颈(Softmax Bottleneck)。

3 幻觉的检测

检测 LLM 中的幻觉对于确保生成内容的可靠性和可信度至关重要。传统的衡量标准主要依赖于词语重叠,无法区分可信内容和幻觉内容之间的细微差别。这样的挑战凸显了为 LLM 幻觉量身定制更复杂的检测方法的必要性。

鉴于这些幻觉的多样性,检测方法也相应地有所不同。

在综述1中,全面介绍了针对事实性幻觉忠实性幻觉的主要幻觉检测策略。

3.1 事实性幻觉的检测

事实性幻觉的检测方法:通常分为 "检索外部事实"(Retrieve External Facts)和 "不确定性估计"(Uncertainty Estimation)。

检索外部事实:为了有效地指出 LLM 输出中的事实不准确之处,一种直观的策略是将模型生成的内容与可靠的知识来源进行比较,如下图 3 所示。

虽然许多幻觉检测方法都依赖外部知识源进行事实检查,但有几种方法可以在零资源环境下解决这一问题,从而无需检索。

这些策略背后的基本前提是,LLM 幻觉的起源本质上与模型的不确定性有关。

因此,通过对模型生成的事实内容的不确定性进行估计,就可以检测出幻觉。

不确定性估计的方法大致可分为两种:基于内部状态和 LLM 行为,如图 4 所示。前者的前提是可以访问模型的内部状态,而后者则适用于更受限制的环境,仅利用模型的可观测行为来推断其潜在的不确定性。

3.2 忠实性幻觉的检测

忠实性幻觉的检测方法:主要侧重于确保生成的内容与给定上下文保持一致,从而避免无关或矛盾输出的潜在隐患。如下图5探讨在 LLM 生成中检测不忠实的方法。

  • 基于事实度量:通过检测生成内容与源内容之间的事实重叠度来评估忠实度。

  • 基于分类器的度量:利用经过训练的分类器来区分生成内容与源内容之间的关联程度。

  • 基于QA的度量方法:利用问题解答系统来验证源内容与生成内容之间的信息一致性。

  • 不确定性估计:通过测量模型对其生成输出的置信度来评估忠实度。

  • 基于prompt的度量方法:让LLM充当评估者,通过特定的prompt策略来评估生成内容的忠实度。

4 幻觉的评估

针对不同类型的幻觉,采用的评估方式不一样。

现有针对幻觉的工作,提出了各种基准来评估LLM中的幻觉,如下表5所示:

现有的基准主要根据LLMs的两种不同能力来评估幻觉:生成事实陈述或判别事实陈述与非事实陈述的能力。下表说明了这两种评估形式的区别。

  • Generation 生成式基准:将幻觉看作一种生成特征,类似于流畅度和连贯性,并对LLM生成的文本进行评估。例如,TruthfulQA用于评估大型模型对问题的回答的真实性,而FactScore则用于评估大型模型生成的个人传记的事实准确性。

  • Discrimination 判别式基准:考察大型模型区分真实陈述和幻觉陈述的能力。具体来说,HaluEval要求模型确定状态信息是否包含幻觉信息,而FACTOR则研究LLM是否更可能生成事实陈述而非非事实陈述。

在这些基准中,TruthfulQA是一种特殊的基准,兼具生成式和判别式两种基准,提供了一个多项选择的替代方案,以测试模型区分真实陈述的能力。

5 幻觉的解决

论文1总结了五种解决幻觉的方法,具体如下图所示:

不同下游任务解决幻觉的方法不同,具体如下图所示:

在哈工大的综述1中,全面回顾了当前减轻幻觉的方法,并根据幻觉成因对这些方法进行了系统分类。

具体来说,综述1将重点放在解决与数据相关的幻觉、与训练相关的幻觉和与推理相关的幻觉的方法上,每种方法都提供了量身定制的解决方案,以应对各自原因所固有的特定挑战。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/268175.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Qt designer界面和所有组件功能的详细介绍(全!!!)

PyQt5和Qt designer的详细安装教程:https://blog.csdn.net/qq_43811536/article/details/135185233?spm1001.2014.3001.5501 目录 1. 界面介绍2. Widget Box 常用组件2.1 Layouts(布局)2.2 Spacers(间隔器)2.3 Item V…

web架构师编辑器内容-使用html2canvas获取截图,并处理一些问题

html2canvas-api 为了使用html2canvas完成截图的功能&#xff0c;我们首先先使用一个按钮来测试一下html2canvas的截图功能。 首先在页面上创建一个img标签 <img id"test-image" :style"{ width: 300px}"/>创建一个button按钮&#xff0c;添加点击…

Linux:jumpserver V3的安装与升级(在线离线)(2)

官方文档写的非常详细&#xff0c;我这篇文章时间长了&#xff0c;会随着官方版本更新而落后 JumpServer - 开源堡垒机 - 官网https://www.jumpserver.org/安装和升级在官网也有详细的信息&#xff0c;我写本章是为了记录一下实验 我的系统是centos7.9 在线安装 在确定我们可…

JoySSL诚招SSL证书代理

不久前&#xff0c;阿里云宣布了一个让人稍感唏嘘的消息——它们的一年期免费SSL证书服务将停步&#xff0c;转而提供三个月期限的证书。这一变化&#xff0c;无疑会使得网站开发的公司在维持用户信任和网站安全上多出心思。然而&#xff0c;免费的午餐并没有彻底消失&#xff…

七天搞定java接口自动化测试实战,一文搞定...

前言 无论是自动化测试还是自动化部署&#xff0c;撸码肯定少不了&#xff0c;所以下面的基于java语言的接口自动化测试&#xff0c;要想在业务上实现接口自动化&#xff0c;前提是要有一定的java基础。 如果没有java基础&#xff0c;也没关系。这里小编也为大家提供了一套jav…

Tomcat日志乱码了怎么处理?

【前言】 tomacat日志有三个地方&#xff0c;分别是Output(控制台)、Tomcat Localhost Log(tomcat本地日志)、Tomcat Catalina Log。 启动日志和大部分报错日志、普通日志都在output打印;有些错误日志&#xff0c;在Tomcat Localhost Log。 三个日志显示区&#xff0c;都可能…

数学的雨伞下:理解世界的乐趣

这本书没有一个公式&#xff0c;却讲透了数学的本质&#xff01; 《数学的雨伞下&#xff1a;理解世界的乐趣》。一本足以刷新观念的好书&#xff0c;从超市到对数再到相对论&#xff0c;娓娓道来。对于思维空间也给出了一个更容易理解的角度。 作者&#xff1a;米卡埃尔•洛奈…

【MySQL学习笔记009】事务

一、事务简介 事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位&#xff0c;事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求&#xff0c;即这些操作要么同时成功&#xff0c;要么同时失败。 二、事务操作 1、操作1 查看/设置事务提交方式 select a…

深度学习中用来训练的train.py 探究学习2.0( 数据预处理)

数据预处理 下列代码为train.py中常见的一些数据处理方法 train_transform transforms.Compose([transforms.Resize((224, 224)),transforms.RandomVerticalFlip(),# 随机旋转&#xff0c;-45度到45度之间随机选transforms.RandomRotation(45),# 从中心开始裁剪transforms.C…

Python实验:关灯游戏

文章目录 前言一、设计表二、关键代码三、运行结果小地图&#xff0c;容易难度&#xff1a;中地图&#xff0c;中等难度&#xff1a;大地图&#xff0c;困难难度&#xff1a; 四、完整代码链接总结 前言 这是一个Python实验作业&#xff0c;内容如下&#xff1a; 题目要求&am…

游戏软件提示d3dcompiler_43.dll的五个解决方法,亲测靠谱

在使用电脑进行工作&#xff0c;玩游戏的时候&#xff0c;我们常常会遇到一些错误提示&#xff0c;其中之一就是“D3DCompiler_43.dll丢失”的提示。D3DCompiler_43.dll是一个非常重要的动态链接库文件。它是由DirectX SDK提供的&#xff0c;用于编译和优化DirectX着色器代码的…

CnosDB:深入了解时序数据处理函数

CnosDB 是一个专注于时序数据处理的数据库&#xff0c;旨在解决时序数据存储与分析问题&#xff0c;为用户提供高效的时序数据管理与查询便利。为了实现这一目标&#xff0c;CnosDB 实现了一系列专用函数&#xff0c;快来和CC一起来看看吧&#xff01; CnosDB&#xff1a;深入了…

进程间通信---信号

什么是信号&#xff1f; 】 信号处理流程 信号类型 发送信号的函数 参数sig&#xff1a;代表 信号 接收信号的函数 参数 handle 的处理方式有几种&#xff1f; 实例代码 实例逻辑 图中的等待操作使用&#xff1a;pause&#xff08;&#xff09;函数 代码 在这里插入代码片…

区域摇杆制作

区域摇杆 介绍界面制作脚本总结 介绍 我之前讲过摇杆&#xff0c;那么看到现在游戏做区域摇杆的更多一些&#xff0c;那么我们来剖析一下。说白了区域摇杆就是在之前固定摇杆的基础上增加了一个启动事件&#xff0c;当我们开始拖拽的时候&#xff0c;我们将摇杆现实启动然后位…

uniapp cli开发和HBuilderX开发

uniapp cli开发和HBuilderX开发 前言 uniapp是一个跨平台的开发框架&#xff0c;可以开发出微信小程序、支付宝小程序、百度小程序、头条小程序、H5、App等&#xff0c;开发者只需要写一套代码&#xff0c;就可以发布到各个平台&#xff0c;大大提高了开发效率。 uniapp的开…

动态规划系列 | 最长上升子序列模型(上)

文章目录 最长上升子序列回顾题目描述问题分析程序代码复杂度分析 怪盗基德的滑翔翼题目描述输入格式输出格式 问题分析程序代码复杂度分析 登山题目描述输入格式输出格式 问题分析程序代码复杂度分析 合唱队形题目描述输入格式输出格式 问题分析程序代码复杂度分析 友好城市题…

驾驶未来:百度Apollo自动驾驶技术的探索与实践(文末赠送apollo周边)

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏:《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! ⛳️ 粉丝福利活动 ✅参与方式&#xff1a;通过连接报名观看课程&#xff0c;即可免费获取精美周边 ⛳️活动链接&#xf…

改进YOLOv8注意力系列三:结合CrissCrossAttention、ECAAttention、EMAU期望最大化注意力

改进YOLOv8注意力系列三:结合CrissCrossAttention、ECAAttention、EMAU期望最大化注意力 代码CrissCrossAttention注意力ECAAttention通道注意力EMAU期望最大化注意力加入方法各种yaml加入结构本文提供了改进 YOLOv8注意力系列包含不同的注意力机制以及多种加入方式,在本文中…

【5G PHY】NR参考信号功率和小区总传输功率的计算

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G算力网络技术标准研究。 博客…

什么是网站监控?

网站监控是跟踪网站的可用性和性能&#xff0c;以最小化宕机时间&#xff0c;优化性能并确保顺畅的用户体验。维护网站正常运行对于任何企业来说都是至关重要的&#xff0c;因而对大多数业务来说&#xff0c;网站应用监控都是一个严峻的挑战。Applications Manager网站应用监控…