智能优化算法应用:基于天鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于天鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于天鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.天鹰算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用天鹰算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.天鹰算法

天鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/123476675
天鹰算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


天鹰算法参数如下:

%% 设定天鹰优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明天鹰算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/268112.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Unity PlayerPrefs存储数据在Windows环境中本地存储的位置

Unity PlayerPrefs存储数据在Windows环境中本地存储的位置 一、编辑器模式下的PlayerPrefs存储位置1.Win r 输入regedit进入注册表界面2. HKEY_CURRENT_USER/Software/Unity3.CompanyName和ProjectName可以在Unity->Edit->Project Settings->Player中查看和设置 二、…

Vue3数据交互axios

我是南城余!阿里云开发者平台专家博士证书获得者! 欢迎关注我的博客!一同成长! 一名从事运维开发的worker,记录分享学习。 专注于AI,运维开发,windows Linux 系统领域的分享! 本…

Git系统有哪些优势

在现在的这个软件开发领域,版本控制是一项非常重要的工作。Git作为比较流行的分布式版本控制系统,他有着独特的优势成为了很多开发者们的首选。那Git系统都有哪些优势呢,下面我以自己的理解简单的介绍一下。 分布式版本控制的优势 Git用的是…

Java多线程、线程池及线程同步(synchronized关键字、悲观锁、乐观锁)

1.进程与线程定义 进程包含线程,如一个百度网盘进程,该进程的线程可以有上传,下载。 2.创建线程的三种方式 方式1-继承Thread类 方式2-实现Runnabled接口 1.常规写法 2.匿名内部类写法 方式3-实现Callable接口 示例代码: f1.get…

nginx 利用 error_page 实现自定义 404 跳转

文章目录 [toc]指定错误代码的 url 路径使用 response 来更改状态码使用 URL 重定向开始搞事情创建一个 404 文件配置 conf 文件通过 CURL 命令验证 error_page 以下内容,摘抄翻译自官网 语法格式 - error_page code ... [[response]] uri;上下文 - http, server, l…

【数据结构入门精讲 | 第十篇】考研408排序算法专项练习(二)

在上文中我们进行了排序算法的判断题、选择题的专项练习,在这一篇中我们将进行排序算法中编程题的练习。 目录 编程题R7-1 字符串的冒泡排序R7-1 抢红包R7-1 PAT排名汇总R7-2 统计工龄R7-1 插入排序还是堆排序R7-2 龙龙送外卖R7-3 家谱处理 编程题 R7-1 字符串的冒…

SpringSecurity6 | 失败后的跳转

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏: Java从入门到精通 ✨特色专栏: MySQL学习 🥭本文内容: SpringSecurity6 | 失败后的跳转 📚个人知识库: Leo知识库,欢迎大家访问 学习…

rk3588 之启动

目录 uboot版本配置修改编译 linux版本配置修改编译 启动sd卡启动制作spi 烧录 参考 uboot 版本 v2024.01-rc2 https://github.com/u-boot/u-boot https://github.com/rockchip-linux/rkbin 配置修改 使用这两个配置即可: orangepi-5-plus-rk3588_defconfig r…

高级人工智能之群体智能:蚁群算法

群体智能 鸟群: 鱼群: 1.基本介绍 蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的优化算法。它通常用于解决路径优化问题,如旅行商问题(TSP)。 蚁群算法的基本步骤…

【C->Cpp】深度解析#由C迈向Cpp(2)

目录 (一)缺省参数 全缺省参数 半缺省参数 缺省参数只能在函数的声明中出现: 小结: (二)函数重载 函数重载的定义 三种重载 在上一篇中,我们从第一个Cpp程序为切入,讲解了Cpp的…

Topaz Video AI 视频修复工具(内附安装压缩包win+Mac)

目录 一、Topaz Video AI 简介 二、Topaz Video AI 安装下载 三、Topaz Video AI 使用 最近玩上了pika1.0和runway的图片转视频,发现生成出来的视频都是有点糊的,然后就找到这款AI修复视频工具 Topaz Video AI。 一、Topaz Video AI 简介 Topaz Video…

Openai的openai新版本调用方式

最近大家有没有发现Openai的openai已经更新到1.6.1了,而且API的调用方式发生了巨大的变化,下面来看看openai新的调用方式吧。 欢迎关注公众号 module ‘openai’ has no attribute ChatCompletion. 提示openai的版本过低。(pip install -U openai) 1. Chat API from openai…

【MySQL学习笔记008】多表查询

1、多表关系 概述:项目开发中,在进行数据库表结构设计时,会根据业务需求及业务模块之间的关系,分析并设计表结构,由于业务之间相互关联,所以各个表结构之间也存在着各种联系,基本上可分为三种&a…

freeRTOS实时操作系统学习笔记

温馨提示:点击图片查看大图更清晰 —————————————————————————————↑↑↑上方资源下载后可获取xmind原文件。 1、freeRTOS移植和配置脑图 2、内核源码学习

网络安全行业术语

病毒 是在计算机程序中插入的破坏计算机功能或者数据的代码,能影响计算机使用,能自我复制的一组计算机指令或者程序代码。 抓鸡 利用使用大量的程序的漏洞,使用自动化方式获取肉鸡的行为,即设法控制电脑,将其沦为肉…

Redis-实践知识

转自极客时间Redis 亚风 原文视频:https://u.geekbang.org/lesson/535?article681062 Redis最佳实践 普通KEY Redis 的key虽然可以自定义,但是最好遵循下面几个实践的约定: 格式:[业务名称]:[数据名]:[id] 长度不超过44字节 不…

多维时序 | MATLAB实CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测预测效果基本介…

服装店管理系统打造门店拓客、促活、存留营销方案

打造门店拓客、促活和存留营销方案对于服装店的管理系统来说是非常重要的。以下是一些可行的方案: 1. 会员管理系统:引入会员管理功能,建立会员档案,跟踪会员消费记录和偏好。通过会员系统,可以实施积分制度、生日礼品…

堆与二叉树(下)

接着上次的,这里主要介绍的是堆排序,二叉树的遍历,以及之前讲题时答应过的简单二叉树问题求解 堆排序 给一组数据,升序(降序)排列 思路 思考:如果排列升序,我们应该建什么堆&#x…

boss app sig及sp参数,魔改base64

前言 大家好呀,欢迎来到我的博客.2023年12月4日,boss web上线了最新的zp_token,环境检测点又增加了,与此同时app端的关键加密so从32位换成了64位,两者ida反编译so的时候都有反调试,无法直接f5,需要手动调整让ida重新识别.google了一下几乎找不到任何有关boss app的文章,所以这…