pytorch张量的创建

张量的创建

  • 张量(Tensors)类似于NumPy的ndarrays ,但张量可以在GPU上进行计算。从本质上来说,PyTorch是一个处理张量的库。一个张量是一个数字、向量、矩阵或任何n维数组。

 

import torch
import numpy
torch.manual_seed(7) # 固定随机数种子

直接创建 

  1. torch.tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False)
  2. 功能:从data创建tensor
    • data: 数据,可以是list,numpy
    • dtype: 数据类型,默认与data的一致
    • device: 所在设备,cuda/cpu
    • requires_grad: 是否需要梯度
    • pin_memory: 是否存于锁页内存
torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])

tensor([[0.1000, 1.2000],
,        [2.2000, 3.1000],
,        [4.9000, 5.2000]])
  1. torch.from_numpy(ndarray)
  2. 功能:从numpy创建tensor

从torch.from_numpy创建的tensor于原ndarray共享内存,当修改其中一个数据,另一个也将会被改动。

a = numpy.array([1, 2, 3])
t = torch.from_numpy(a)

 依据数值创建¶

  1. torch.zeros(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
  2. 功能:依size创建全0张量
    • size: 张量的形状
    • out: 输出的张量
    • layout: 内存中布局形式
    • device: 所在设备
    • requires_grad: 是否需要梯度
torch.zeros(2, 3)

tensor([[0., 0., 0.],
,        [0., 0., 0.]])
  1. torch.zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False)
  2. 功能:依input形状创建全0张量
    • input: 创建与input同形状的全0张量
    • dtype: 数据类型
    • layout: 内存中布局形式
input = torch.empty(2, 3)
torch.zeros_like(input)

tensor([[0., 0., 0.],
,        [0., 0., 0.]])
torch.ones(2, 3)

tensor([[1., 1., 1.],
,        [1., 1., 1.]])
  1. torch.ones_like(input, dtype=None, layout=None, device=None, requires_grad=False)
  2. 功能:依input形状创建全1张量
    • size: 张量的形状
    • dtype: 数据类型
    • layout: 内存中布局形式
    • device: 所在设备
    • requires_grad: 是否需要梯度
input = torch.empty(2, 3)
torch.ones_like(input)

tensor([[1., 1., 1.],
,        [1., 1., 1.]])

 

  1. torch.full_like(input, dtype=None, layout=torch.strided, device=None, requires_grad=False)
  2. 功能: 依input形状创建指定数据的张量
    • size: 张量的形状
    • fill_value: 张量的值
  3. torch.arange(start=0, end. step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
  4. 功能:创建等差的1维张量
    • start: 数列起始值
    • end: 数列结束值
    • step: 数列公差,默认为1
torch.arange(1, 2.5, 0.5)

tensor([1.0000, 1.5000, 2.0000])

 

 依概率分布创建张量

torch.normal(mean, std, out=None) : 生成正态分布

# mean为张量, std为张量
torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1))

tensor([0.8532, 2.7075, 3.7575, 3.2200, 6.0145, 5.5526, 6.8577, 8.3697, 9.0276,
,        9.8318])

 

torch.randn(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) : 生成标准正态分布

 

torch.randn(2, 3)

tensor([[1.3955, 1.3470, 2.4382],
,        [0.2028, 2.4505, 2.0256]])

 

torch.rand(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) : 在[0,1)上,生成均匀分布

torch.rand(2, 3)

tensor([[0.7405, 0.2529, 0.2332],
,        [0.9314, 0.9575, 0.5575]])

 张量拼接与切分

torch.cat(tensors, dim=0, out=None) : 将张量按维度进行拼接

 

x = torch.randn(2, 3)
torch.cat((x, x, x), 1)

# 
tensor([[-1.7038,  0.6248,  0.1196, -1.7038,  0.6248,  0.1196, -1.7038,  0.6248,
,          0.1196],
,        [-0.8049,  1.6162,  0.2516, -0.8049,  1.6162,  0.2516, -0.8049,  1.6162,
,          0.2516]])

 

torch.stack(tensors, dim=0, out=None) : 在新创建的维度上进行拼接

torch.chunk(input, chunks, dim=0)  : 将张量按维度进行平均切分

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/265591.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深圳鼎信|输电线路防山火视频监控预警装置:森林火灾来袭,安全不留白!

受线路走廊制约和环保要求影响,输电线路大多建立在高山上,不仅可以减少地面障碍物和人类活动的干扰,还能提高线路的抗灾能力和可靠性。但同时也会面临其它的难题,例如森林火灾预防。今天,深圳鼎信智慧将从不同角度分析…

随机森林 2(决策树)

通过 随机森林 1 的介绍,相信大家对随机森林都有了一个初步的认知,知道了随机和森林分别指的是什么,以及决策树根据什么选择内部节点。本文将会从森林深入到树,去看一下决策树是如何构建的。网上很多文章都讲了决策树如何构建&…

幺模矩阵-线性规划的整数解特性

百度百科:幺模矩阵 在线性规划问题中,如果A为幺模矩阵,那么该问题具有最优整数解特性。也就是说使用单纯形法进行求解,得到的解即为整数解。无需再特定使用整数规划方法。 m i n c T x s . t . { A x ≥ b x ≥ 0 \begin{align*} min \quad…

Java动态代理Proxy(通俗易懂,一学就会)

为什么需要代理?代理长什么样? 代理实现案例代码 1.中介接口(约束代理方法) 2.BigStar(被代理) 实现接口方法 3.代理工具类 invoke方法中的proxy表示代理对象,method表示代理获取到调用的方法对…

Go 代码检查工具 golangci-lint

一、介绍 golangci-lint 是一个代码检查工具的集合,聚集了多种 Go 代码检查工具,如 golint、go vet 等。 优点: 运行速度快可以集成到 vscode、goland 等开发工具中包含了非常多种代码检查器可以集成到 CI 中这是包含的代码检查器列表&…

Linux配置环境变量的几种方式

​ 📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢交流讨论:欢迎加入我们一起学习!📢资源分享:耗时200小时精选的「软件测试…

青少年CTF-qsnctf-Web-include01include02(多种方法-知识点较多-建议收藏!)

PHP常见伪协议 php://filter是PHP中独有的一种协议,它是一种过滤器,可以作为一个中间流来过滤其他的数据流。通常使用该协议来读取或者写入部分数据,且在读取和写入之前对数据进行一些过滤,例如base64编码处理,rot13处…

【MybatisPlus快速入门】(2)SpringBoot整合MybatisPlus 之 标准数据层开发 代码示例

目录 1 标准CRUD使用2 新增3 删除4 修改5 根据ID查询6 查询所有7 MyBatis-Plus CRUD总结 之前我们已学习MyBatisPlus在代码示例与MyBatisPlus的简介,在这一节中我们重点学习的是数据层标准的CRUD(增删改查)的实现与分页功能。代码比较多,我们一个个来学习…

AtomHub 开源容器镜像中心开放公测,国内服务稳定下载

由开放原子开源基金会主导,华为、浪潮、DaoCloud、谐云、青云、飓风引擎以及 OpenSDV 开源联盟、openEuler 社区、OpenCloudOS 社区等成员单位共同发起建设的 AtomHub 可信镜像中心正式开放公测。AtomHub 秉承共建、共治、共享的理念,旨在为开源组织和开…

OpenCV-Python(19):Canny边缘检测

目录 学习目标 Canny 边缘检测原理 1.噪声抑制(噪声去除) 2.梯度计算 3.非极大值抑制 4.双阈值检测(滞后阈值) 5.边缘连接 Canny 边缘检测步骤 Canny 边缘检测的OpenCV实现 不同阈值的边缘检测效果 学习目标 了解Canny边缘检测的概念学习掌握函数cv2.Canny()的用法 …

C++加法运算符的重载(operator)

1.重载加法运算符 为什么要重载加法运算符? 因为C提供的加法运算符只能满足基本数据类型间的加法,如果我想让俩个相同的类的对象进行加法的话会报错 所以为了能让俩个相同类的对象进行加法,我们要把这个过程封装到一个函数里面,只…

使用低代码工具构建电商平台:简化开发流程,加速应用搭建

在数字化时代,电商平台成为了各类企业的重要组成部分。然而,传统的软件开发过程往往漫长而复杂,需要大量的编码和调试工作。随着低代码工具的出现,开发者可以通过简化的方式来搭建电商平台应用,从而更快速地满足业务需…

Netty Review - 优化Netty通信:如何应对粘包和拆包挑战_自定义长度分包编解码码器

文章目录 概述Pre概述Code自定义协议自定义解码器服务端的消息处理客户端启动类自定义编码器客户端业务处理Handler 测试 概述 Pre Netty Review - 借助SimpleTalkRoom初体验异步网络编程的魅力 Netty Review - 优化Netty通信:如何应对粘包和拆包挑战 中我们遗留了…

【Linux】多线程

目录​​​​​​​ Linux线程概念 1. 什么是线程 2. 重新定义线程和进程 3. 重讲地址空间 4. 线程的优点 5. 线程的缺点 6. 线程异常 7. 线程用途 Linux进程VS线程 1. 进程和线程 2. 进程的多个线程共享 3. 线程为什么进程要更加轻量化? Linux线程…

盲盒小程序搭建:开启互联网盲盒时代

盲盒目前是一个非常火爆的商业模式。随着科技的发展,盲盒市场也开始采用线上盲盒进行拓客,吸引盲盒爱好者。当下在互联网电商影响下,盲盒小程序逐渐受到了商家的青睐。 线上盲盒市场 盲盒消费主要是根据自身的未知性吸引消费者,消…

SpringBoot Elasticsearch全文搜索

文章目录 概念全文搜索相关技术Elasticsearch概念近实时索引类型文档分片(Shard)和副本(Replica) 下载启用SpringBoot整合引入依赖创建文档类创建资源库测试文件初始化数据创建控制器 问题参考 概念 全文搜索(检索),工作原理:计算…

最优化理论与方法(2)---单纯形方法

文章目录 1. 线性规划1.1 基本介绍1.2 最优基本可行解 2. 表格形式单纯形方法2.1 基本知识引入2.2 求解步骤2.3 例题12.4 例题2 3. 单纯形法的进一步讨论3.1 无界解3.2 多个解 1. 线性规划 1.1 基本介绍 把握住两点:最小化和等号。  如果问题是最大化max&#xff…

新版iApp应用商店软件库源码 /纯UI源码 /开源高品质UI源码 /无需后台支持

源码介绍: 新版iApp应用商店软件库源码,它是纯UI源码、开源高品质UI源码 ,而且它无需后台支持。UI界面简约。 这是应用商店软件库UI源码,原作者为他人开发的作品,经过同意后进行了开源。 这是一份完全原创的作品&…

gitee版本回退本地和仓库的执行步骤(后悔药,无副作用,按说明书使用)

目录 1.本地回退 1.打开项目文件夹 3.回退到指定版本 4.选择回退模式并确认 5.本地回退成功 2.回退仓库版本 1.在git上面找到项目的提交记录 2.找到提交错误的版本​编辑 3.双击新页面这个版本进去 点击操作再点击revert​编辑 4.确认回退 ​5.仓库回退成功 在使用…

【go-zero】 go-zero API 如何接入 Nacos 被 java 服务调用 | go集成java服务

一、场景 外层使用的是springcloud alibaba 这一套java的分布式架构 然后需要接入go-zero的api服务 这里我们将对api服务接入Nacos进行一个说明 二、实战 1、package 因为使用的是go-zero框架 这里我们会优先使用go-zero生态的包 github 包如下: github.com/nacos-group/naco…