论文推荐:大型语言模型能自我解释吗?

这篇论文的研究主要贡献是对LLM生成解释的优缺点进行了调查。详细介绍了两种方法,一种是做出预测,然后解释它,另一种是产生解释,然后用它来做出预测。

最近的研究发现,即使LLM是在特定数据上训练的,也不能认识到训练的知识与推理上下文之间的联系。

因此一些人认为之为“X链”的方法非常重要。因为要求LLM将任务分解为思维链时,LLM在解决任务的同时检索所训练的现有知识方面表现更好。

LLM有没有能力回答问题,并提供一个解释如何得出结论。或者收到提示词后,LLM有没有能力分解他们的答案?

这篇论文使用两种方法来测试LLM的能力:

做出预测然后解释,或者产生一个解释,并用它来做出预测。

方法对比

思想链生成已被证明是一种较为敏捷的快速工程技术,特别是思想链还有很多优化的变体。思想链对于生成准确的答案是有效的,特别是对于复杂的推理任务,如解决数学问题或复杂的推理任务。

LLM-Generated Self-Explanations论文在情感分析领域对LLM生成的自我解释进行系统分析。

1、解释然后预测 :Explanation To Prediction

下面的提示是E-P配置的一个示例。左边是SYSTEM描述,其中包含USER请求和LLM生成的ASSISTANT响应。在这个例子中,使用gpt-3.5 turbo,右边是标准模型设置。

上面的Python代码如下:

 from openai import OpenAI
 client = OpenAI()
 
 response = client.chat.completions.create(
   model="gpt-3.5-turbo",
   messages=[
     {
       "role": "system",
       "content": "You are a creative and intelligent movie review analyst, whose purpose is to aid in sentiment analysis of movie reviews. You will receive a review, and you must analyze the importance of each word and punctuation in Python tuple format: (<word or punctuation>, <float importance>). Each word or punctuation is separated by a space. The importance should be a decimal number to three decimal places ranging from -1 to 1, with -1 implying a negative sentiment and 1 implying a positive sentiment. Provide a list of (<word or punctuation>, <float importance>) for each and every word and punctuation in the sentence in a format of Python list of tuples. Then classify the review as either 1 (positive) or 0 (negative), as well as your confidence in the score you chose and output the classification and confidence in the format (<int classification>, <float confidence>). The confidence should be a decimal number between 0 and 1, with 0 being the lowest confidence and 1 being the highest confidence.\nIt does not matter whether or not the sentence makes sense. Do your best given the sentence.\nThe movie review will be encapsulated within <review> tags. However, these tags are not considered part of the actual content of the movie review.\nExample output:\n[(<word or punctuation>, <float importance>), (<word or punctuation>, <float importance>), ... ] (<int classification>, <float confidence>)"
     },
     {
       "role": "user",
       "content": "<review> Offers that rare combination of entertainment and education . <review>"
     },
     {
       "role": "assistant",
       "content": "[('Offers', 0.500), ('that', 0.000), ('rare', 0.300), ('combination', 0.300), ('of', 0.000), ('entertainment', 0.800), ('and', 0.000), ('education', 0.500), ('.', 0.000)] (1, 0.800)"
     }
   ],
   temperature=1,
   max_tokens=256,
   top_p=1,
   frequency_penalty=0,
   presence_penalty=0
 )

2、做出预测然后解释:Prediction To Explanation

下面的提示是P-E配置的一个示例。首先给出的是预测,然后是解释。

Python代码如下:

 from openai import OpenAI
 client = OpenAI()
 
 response = client.chat.completions.create(
   model="gpt-3.5-turbo",
   messages=[
     {
       "role": "system",
       "content": "You are a creative and intelligent movie review analyst, whose purpose is to aid in sentiment analysis of movie reviews. A review will be provided to you, and you must classify the review as either 1 (positive) or 0 (negative), as well as your confidence in the score you chose. The confidence should be a decimal number between 0 and 1, with 0 being the lowest confidence and 1 being the highest confidence. Output this in the Python tuple format (<int classification>, <float confidence>).\nThen, analyze how important every single word and punctuation token in the review was to your classification. The importance should be a decimal number to three decimal places ranging from -1 to 1, with -1 implying a negative sentiment and 1 implying a positive sentiment. Provide a list of (<word or punctuation>, <float importance>) for each and every word and punctuation token in the sentence in a format of Python list of tuples. Each word or punctuation is separated by a space.\nIt does not matter whether or not the sentence makes sense. Do your best given the sentence.\nThe movie review will be encapsulated within <review> tags. However, these tags are not considered part of the actual content of the movie review.\nExample output:\n(<int classification>, <float confidence>)\n[(<word or punctuation>, <float importance>), (<word or punctuation>, <float importance>), ... ]"
     },
     {
       "role": "user",
       "content": "<review> A film that takes you inside the rhythms of its subject : You experience it as you watch . <review>"
     },
     {
       "role": "assistant",
       "content": "(1, 0.8)\n[('A', 0.2), ('film', 0.3), ('that', 0.2), ('takes', 0.2), ('you', 0.4), ('inside', 0.2), ('the', 0.1), ('rhythms', 0.2), ('of', 0.2), ('its', 0.1), ('subject', 0.1), (':', 0.1), ('You', 0.4), ('experience', 0.3), ('it', 0.2), ('as', 0.2), ('watch', 0.2), ('.', 0.1)]"
     }
   ],
   temperature=1,
   max_tokens=256,
   top_p=1,
   frequency_penalty=0,
   presence_penalty=0
 )

提示输入:

 System: You are a creative and intelligent movie review analyst, whose purpose is to aid in sentiment analysis of movie reviews. A review will be provided to you, and you must classify the review as either 1 (positive) or 0 (negative), as well as your confidence in the score you chose. The confidence should be a decimal number between 0 and 1, with 0 being the lowest confidence and 1 being the highest confidence. Output this in the Python tuple format (<int classification>, <float confidence>).
 Then, analyze how important every single word and punctuation token in the review was to your classification. The importance should be a decimal number to three decimal places ranging from -1 to 1, with -1 implying a negative sentiment and 1 implying a positive sentiment. Provide a list of (<word or punctuation>, <float importance>) for each and every word and punctuation token in the sentence in a format of Python list of tuples. Each word or punctuation is separated by a space.
 It does not matter whether or not the sentence makes sense. Do your best given the sentence.
 The movie review will be encapsulated within <review> tags. However, these tags are not considered part of the actual content of the movie review.
 Example output:
 (<int classification>, <float confidence>)
 [(<word or punctuation>, <float importance>), (<word or punctuation>, <float importance>), ... ]
 
 User: <review> A film that takes you inside the rhythms of its subject : You experience it as you watch . <review>
 
 Assistant:

结果

 Understood! I'm ready to analyze the movie review you provided. Here are the results:
 
 (<int classification>, <float confidence>) = (0, 0.8) - Classification: Negative
 
 Here are the importance scores for each word and punctuation token in the review:
 
 [(<word or punctuation>, <float importance>), (the, -0.6), (film, 0.4), (that, -0.5), (takes, 0.3), (you, -0.2), (inside, 0.1), (the, -0.6), (rhythms, 0.3)]
 
 Explanation:
 
 The word "film" has a low importance score of -0.6 because it does not convey much sentiment towards either positive or negative emotions in the context of the review.
 The word "that" has a low importance score of -0.5 because it is a transitional word that does not significantly impact the overall sentiment of the review negatively or positively . Its presence does not change how we classify this review as entirely negative . However , its absence might affect our classification; therefore we give it some weight . This implies that if more instances like this appear throughout a text , their impact will be less than if they were part of an entirely different kind of text . For example , "the film takes you inside" would have an opposite meaning than just saying "it takes you inside".) [1][3] )] )] ) ]]. * The phrase "You experience it as you watch" has an important score of 1 because It conveys positive emotion and could be interpreted as evidence that viewers will find watching this motion picture pleasurable and engaging .[2][4]) [5][6]; hence why we rank important words higher than unimportant phrases when deciding on their overall sentimental value within given texts). As such , we consider these particular elements crucial when evaluating whether something falls into one category versus another based solely upon how others might interpret them without additional context outside those given here.] Finally – although there may be other factors at play–by focusing solely on these particular pieces here allows us to better understand what makes certain sentences/phrases stand out amongst others!

可观察性和可检查性

基于llm的应用程序的很大一部分要求是能够观察和检查生成AI应用程序的行为,这对于管理输入和输出token的成本尤其重要,为了模仿我们人类的行为,还要再加上可解释性。

而这研究发现自己处于可解释性研究中三个领域的交叉点:

例如当要求解决一个数学问题时,即使没有明确指示这样做,模型也经常包含详细的步骤。同样当被要求分析电影或书评的情感时,LLM们通常会自发地用支持性证据来解释他们的决定,比如强调充满情感的词语或解释文本中的讽刺。

下面是少样本方法的一个实际例子。几个提示符是人为生成的,用于向模型提供指令。

总结

论文研究了像ChatGPT这样的llm生成自我解释的能力,特别是在情感分析任务中,并将它们与传统的解释方法(如遮挡和LIME)进行了比较。LLM模型可以自发地为其决策生成解释,例如在情感分析任务中识别关键词。

预测的准确性因不同的自我解释方法而异。首先生Explain-then-Predict会降低性能,这表明在准确性和可解释性之间需要权衡。

没有一种解释方法在不同的度量标准中始终优于其他方法。自我解释的表现与传统方法相当,但在一致性指标方面存在显着差异。

ChatGPT的解释和预测显示了全面的值,并且对单词删除不太敏感,反映了类似人类的推理过程,但可能缺乏详细的精度。

研究结果表明需要更好的方法来引出自我解释和重新思考评估实践。与其他LLM和不同解释类型的比较研究可以提供进一步的见解。

论文地址:

https://avoid.overfit.cn/post/aff43e4336b5487fa6abd01357fc51b6

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/265063.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【华为数据之道学习笔记】6-4 打造数据供应的“三个1”

数据服务改变了传统的数据集成方式&#xff0c;所有数据都通过服务对外提供&#xff0c;用户不再直接集成数据&#xff0c;而是通过服务获取。因此&#xff0c;数据服务应该拉动数据供应链条的各个节点&#xff0c;以方便用户能准确地获取数据为重要目标。 数据供应到消费的完整…

【C语言】打印内存数据

C语言&#xff0c;用函数封装&#xff1a;16进制打印unsigned char *p指向的内存&#xff0c;长度为int l。16个字节&#xff0c;换一次行。16个字节用一个字符串缓存&#xff0c;一次打印。 以下是一个使用函数封装的C语言代码&#xff0c;用于以16进制格式打印unsigned char …

汽车级EEPROM 存储器 M24C64-DRMN3TP/K是电可擦除可编程只读存储器?它的功能特性有哪些?

M24C64-DRMN3TP/K是一款64 Kbit串行EEPROM汽车级设备&#xff0c;工作温度高达125C。符合汽车标准AEC-Q100 1级规定的极高可靠性。 该设备可通过一个高达1MHz的简单串行I2C兼容接口访问。 存储器阵列基于先进的真EEPROM技术&#xff08;电可擦除可编程存储器&#xff09;。M2…

java String转asc码,然后ascII再转四位的16进制数。

理论知识补充&#xff1a; char是Java中的保留字&#xff0c;表示一种数据类型。与别的语言不同的是&#xff0c;char在Java中是16位的&#xff0c;因为Java用的是Unicode编码。不过8位的ASCII码包含在Unicode编码中&#xff0c;其值对应十进制的表示范围是0~127。 char是Java八…

React学习计划-React16--React基础(五)脚手架创建项目、todoList案例、配置代理、消息订阅与发布

一、使用脚手架create-react-app创建项目 react脚手架 xxx脚手架&#xff1a;用来帮助程序员快速创建一个基于xxx库的模板项目 包含了所有需要的配置&#xff08;语法检查、jsx编译、devServe…&#xff09;下载好了所有相关的依赖可以直接运行一个简单的效果 react提供了一个…

Ignite数据流处理

数据流处理 #1.概述 Ignite提供了一个数据流API&#xff0c;可用于将大量连续的数据流注入Ignite集群&#xff0c;数据流API支持容错和线性扩展&#xff0c;并为注入Ignite的数据提供了至少一次保证&#xff0c;这意味着每个条目至少会被处理一次。 数据通过与缓存关联的数据…

Midjourney V6来袭,是放大招还是挤牙膏?

赶在2023年的尾巴&#xff0c;Midjourney终于迎来升级&#xff0c;目前处于测试阶段&#xff0c;那么它的升级之处在哪里&#xff0c;与之前版本提升又有多大&#xff0c;跟着我&#xff0c;带你一起看MidjourneyV6. 图像质量更上一层楼 对于AI绘画工具而言&#xff0c;目前最…

Win7如何修改MAC地址

MAC地址&#xff0c;又叫做物理地址、硬件地址&#xff0c;是用来定义网络设备的位置&#xff0c;一般情况下&#xff0c;MAC地址在网卡中是固定的&#xff0c;但不排除有人手动去修改自己的MAC地址。win7如何修改MAC地址?其实修改MAC地址的方法很简单&#xff0c;可以通过硬件…

DSC2803X,DSP Pin2Pin with Ti Parts

一&#xff0c;产品特性 高能效 32 位处理器(H28x 内核)  主频 120MHz&#xff08;周期 8.33ns&#xff09;  哈佛(Harvard) 总线架构  硬件乘法/除法单元  4/6 通道高速 DMA  快速中断响应和处理  统一存储器编程模型  高效代码&#xff08;使用 C/C和汇编语言&…

通过 Higress Wasm 插件 3 倍性能实现 Spring-cloud-gateway 功能

作者&#xff1a;韦鑫&#xff0c;Higress Committer&#xff0c;来自南京航空航天大学分布式系统实验室 导读&#xff1a;本文将和大家一同回顾 Spring Cloud Gateway 是如何满足 HTTP 请求/响应转换需求场景的&#xff0c;并为大家介绍在这种场景下使用 Higress 云原生网关的…

2024应届大学生,为云计算高薪岗位做好准备了吗?

云计算正处于快速发展阶段&#xff0c;对于企业和个人来说&#xff0c;云计算提供了方便、灵活和智能的解决方案&#xff0c;对各行各业都有着重要的影响和推动作用。 随着云计算新市场、新业务、新应用的不断出现&#xff0c;人力需求迅猛。国家相继出台一系列政策大力扶持云…

集群部署1.27.4(高可用)

一、简介 二、环境准备 HostsIPmaster01172.16.100.21master02172.16.100.22master03172.16.100.23node01172.16.100.11node02172.16.100.12 VIP&#xff1a;172.16.100.21 Service虚拟IP地址段&#xff1a;10.0.0.0/24 kubernetes内网地址&#xff1a;10.244.0.0/16 三、初…

2. 行为模式 - 命令模式

亦称&#xff1a; 动作、事务、Action、Transaction、Command 意图 命令模式是一种行为设计模式&#xff0c; 它可将请求转换为一个包含与请求相关的所有信息的独立对象。 该转换让你能根据不同的请求将方法参数化、 延迟请求执行或将其放入队列中&#xff0c; 且能实现可撤销…

27.Java程序设计-基于Springboot的在线考试系统小程序设计与实现

1. 引言 随着数字化教育的发展&#xff0c;在线考试系统成为教育领域的一项重要工具。本论文旨在介绍一个基于Spring Boot框架的在线考试系统小程序的设计与实现。在线考试系统的开发旨在提高考试的效率&#xff0c;简化管理流程&#xff0c;并提供更好的用户体验。 2. 系统设…

高级数据结构 <二叉搜索树>

本文已收录至《数据结构(C/C语言)》专栏&#xff01; 作者&#xff1a;ARMCSKGT 目录 前言正文二叉搜索树的概念二叉搜索树的基本功能实现二叉搜索树的基本框架插入节点删除节点查找函数中序遍历函数析构函数和销毁函数(后序遍历销毁)拷贝构造和赋值重载(前序遍历创建)其他函数…

爬虫概念简述

爬虫简述 ⼀、什么是爬虫&#xff1f;二、爬虫有什么用?三、爬虫的分类四、所谓的“爬虫学的好&#xff0c;牢饭吃到饱 !”五、爬虫的大致流程 ⼀、什么是爬虫&#xff1f; ​ 简言之&#xff0c;爬虫可以帮助我们把网站上的信息快速提取并保存下来。 ​ 我们可以把互联网比…

仅操作一台设备,如何实现本地访问另一个相同网段的私网?

正文共&#xff1a;1034 字 8 图&#xff0c;预估阅读时间&#xff1a;4 分钟 书接上文&#xff08;地址重叠时&#xff0c;用户如何通过NAT访问对端IP网络&#xff1f;&#xff09;&#xff0c;我们已经通过两台设备的组合配置实现了通过IP地址进行访问。但一般场景中&#xf…

浏览器原理篇—渲染阻塞

渲染阻塞 1.DOM 的解析 html 文档 边加载边解析 的&#xff1b;网络进程和渲染进程之间会建立一个共享数据的管道&#xff0c;网络进程接收到数据实时传递给渲染进程&#xff0c;渲染进程的 HTML 解析器&#xff0c;它会动态接收字节流&#xff0c;并将其解析为 DOM 2.字节流…

SpringMVC系列之技术点定向爆破二

SpringMVC的运行流程 客户端发送请求 tomcat接收对应的请求 SpringMVC的核心调度器DispatcherServlet接收到所有请求 请求地址与RequestMapping注解进行匹配&#xff0c;定位到具体的类和具体的处理方法&#xff08;封装在Handler中&#xff09; 核心调度器找到Handler后交…

【LeetCode刷题笔记】前缀树

208. 实现 Trie (前缀树) 解题思路: 1. 前缀树 Map实现 ,使用一个 Map<Character, Trie> 来存储 每个字符 对应的 若干子节点 ,在构造函数中初始化 根节点 root 为 当前对象实例 , 在 插入