基于YOLOv8深度学习的智能玉米害虫检测识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:玉米是全球重要的粮食作物之一,玉米害虫的侵害会严重影响玉米产量和品质,导致农民经济损失。因此,玉米害虫的及时检测与识别显得至关重要。本文基于YOLOv8深度学习框架,通过4538张图片,训练了一个进行智能玉米害虫检测识别的目标检测模型。并基于此模型开发了一款带UI界面的智能玉米害虫检测识别系统,可用于实时检测场景中的13种玉米害虫类别,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

玉米是全球重要的粮食作物之一,玉米害虫的侵害会严重影响玉米产量和品质,导致农民经济损失。因此,玉米害虫的及时检测与识别显得至关重要。精确的害虫识别能够帮助农业工作者快速确定害虫种类,并采取针对性的防治措施,有效减少化学农药的滥用,降低对生态环境的负面影响,同时增加农作物产量,提高农业生产的经济效益。

智能玉米害虫检测与识别系统有着广泛的应用场景。
首先,它可以应用于农田管理中,通过将系统集成到无人机或田间自动化设备中,进行大规模的作物健康监测,实时反馈害虫活动情况,提升害虫防控的效率和精度。
其次,在现代化精准农业中,该系统能够与智能农业平台相结合,为农户提供数据分析和决策支持,实现科学种植和可持续发展。
此外,研究机构可以利用此系统收集和分析害虫发生的模式和趋势,对农业害虫生态学进行深入研究,为制定害虫综合管理策略提供科学依据。
总之,智能玉米害虫检测与识别系统是现代农业技术发展的重要组成部分,对保障粮食安全、推动农业现代化和生态环保均具有重要意义。

博主通过搜集不同种类的玉米害虫的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的智能玉米害虫检测识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行13种玉米害虫的检测与识别,分别为: ['幼虫', '鼹鸣虫', '电线虫', '玉斑螟', '黑夜蛾', '大夜蛾', '黄地老虎', '红蜘蛛', '玉米螟', '黄曲条夜蛾', '蚜虫', '白星花金龟', '桃小食心虫'];
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于不同玉米害虫的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含4538张图片,其中训练集包含3857张图片验证集包含681张图片,部分图像及标注如下图所示。
在这里插入图片描述

在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入CornInsectData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\CornInsectDetection\datasets\CornInsectData\train
val: E:\MyCVProgram\CornInsectDetection\datasets\CornInsectData\val

nc: 13
names: ['grub', 'mole cricket', 'wireworm', 'white margined moth', 'black cutworm', 'large cutworm', 'yellow cutworm', 'red spider', 'corn borer', 'army worm', 'aphids', 'Potosiabre vitarsis', 'peach borer']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/CornInsectData/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5平均值为0.772,结果还是很不错的,由于有些类别害虫样本较少,精度较差,影响了部分整体精度,有待进一步提升。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/IP015000068.jpg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)


# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款智能玉米害虫检测识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的智能玉米害虫检测识别系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/263890.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

react当中生命周期(旧生命周期详解)

新生命周期https://blog.csdn.net/kkkys_kkk/article/details/135156102?spm1001.2014.3001.5501 目录 什么是生命周期 react中的生命周期 旧生命周期 生命周期图示 常用的生命周期钩子函数 初始化阶段 挂载阶段 在严格模式下挂载阶段的生命周期函数会执行两次原因 更…

W25Q128

什么是 W25Q128 ? W25Q128是一款由Winbond(威邦电子)公司生产的闪存存储器芯片,属于串行闪存系列。具体来说,W25Q128是一颗128Mb(兆位)容量的串行闪存芯片,其中"W"代表Wi…

Python匹配文件模块的实战技巧

更多资料获取 📚 个人网站:ipengtao.com 在Python中,文件匹配是许多应用中常见的需求,例如文件管理、数据处理等。本文将深入探讨Python中用于文件匹配的模块,包括glob、fnmatch和os.path等,通过丰富的示例…

第11章 GUI Page403~405 步骤三 设置滚动范围

运行效果: 源代码: /**************************************************************** Name: wxMyPainterApp.h* Purpose: Defines Application Class* Author: yanzhenxi (3065598272qq.com)* Created: 2023-12-21* Copyright: yanzhen…

C# 跨越配置

跨越配置1 项目框架 .NET Framework 1.web.config配置 在system.webServer节点中添httpProtocol子节点 Access-Control-Allow-Origin值为“*”” <httpProtocol><customHeaders><add name"Access-Control-Allow-Origin" value"*" /><…

基于DeepSpeed对 llama2-7b的LORA精调

DeepSpeed数据并行研究 1. 技术调研 a. DeepSpeed DeepSpeed是一个开源深度学习训练优化库&#xff0c;其中包含一个新的显存优化技术—— ZeRO&#xff08;零冗余优化器&#xff09;。该框架包含四个技术亮点&#xff1a; 用 3D 并行化实现万亿参数模型训练&#xff1a; D…

【算法】使用二分查找解决算法问题:理解二分法思想,模板讲解与例题实践

文章目录 二分算法思想 / 性质 / 朴素模板二分查找的引入&#xff08;二段性&#xff09;704.二分查找 模板34.在排序数组中查找元素的第一个和最后一个位置 二分查找的前提条件 / 时间复杂度分析 算法题69.x的平方根35.搜索插入位置852.山脉数组的峰顶索引162.寻找峰值153.寻找…

服务熔断(Hystrix)

服务雪崩 多个微服务之间调用的时候&#xff0c;假设微服务A调用微服务B和微服务C&#xff0c;微服务B和微服务C又调用其他的微服务&#xff0c;这就是所谓的“扇出”&#xff0c;如果扇出的链路上某个微服务的调用响应时间过长&#xff0c;或者不可用&#xff0c;对微服务A的…

《每天一分钟学习C语言·六》

1、 1字节&#xff08;Byte&#xff09;8位&#xff0c;1KB1024字节&#xff0c;1M1024KB&#xff0c;1G1024MB 2、 char ch A; printf(“ch %d\n”, ch);ch为65 这里是ASCII码转换 3、 scanf("%d", &i); //一般scanf直接加输入控制符 scanf("m%d&qu…

TKEStack容器管理平台实战之部署wordpress应用

TKEStack容器管理平台实战之部署wordpress应用 一、TKEStack介绍1.1 TKEStack简介1.2 TKEStack特点1.3 TKEStack架构图 二、kubernetes集群介绍2.1 k8s简介2.2 k8s架构图 三、本次实践介绍3.1 实践环境要求3.2 本次实践环境规划3.3 本次实践简介 四、安装容器管理平台4.1 安装T…

WinRAR如何设置和清除密码?

WinRAR是一款功能强大的压缩管理器&#xff0c;除了能把文件打包变小&#xff0c;还能给压缩包设置密码保护&#xff0c;让文件不能随意打开&#xff0c;不需要时还可以把密码取消。下面来说说具体怎么操作吧。 WinRAR根据需要可以设置单次密码和永久密码&#xff0c;我们分别…

C++ Qt开发:Charts绘图组件概述

Qt 是一个跨平台C图形界面开发库&#xff0c;利用Qt可以快速开发跨平台窗体应用程序&#xff0c;在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置&#xff0c;实现图形化开发极大的方便了开发效率&#xff0c;本章将重点介绍QCharts二维绘图组件的常用方法及灵活运用。 …

Git 配置多个 SSH-Key

Git 配置多个 SSH-Key &#xff08;两个都是gitee&#xff09; 先看图&#xff0c;官网固然重要&#xff0c;但是不完全行&#xff08;因为官网示例是一个gitee一个github&#xff09;&#xff0c;现在想是想多个都是gitee在他上面稍微更改即可 一般不对遇到这种问题&#xf…

Windows电脑向ipad和iOS系统共享文件夹

Windows电脑向ipad和iOS系统共享文件夹 这个方案不需要下载任何软件&#xff0c;但是要求 iOS 和 Windows 在同一个局域网内。再大的文件都可以在 iOS13 自带的的“文件App”里实时显示&#xff0c;可以直接打开。这个解决方案需要你 Windows 电脑上登陆了微软账号&#xff0c…

数字技术:引领未来的创新驱动力

数字技术&#xff0c;作为当代最具创新性和影响力的技术领域之一&#xff0c;已经在全球范围内引起了广泛的关注和研究。当前&#xff0c;数字技术正以惊人的速度改变着我们的世界&#xff0c;从日常生活到商业领域&#xff0c;无一不受到其影响。数字技术的发展不仅改变了人们…

深度学习美化图片,绝对可行,美化效果挺好 DPED

一、背景 要美化生成的图片的效果&#xff0c;找到一个 效果如下&#xff1a; 二、步骤 1、python3.6环境&#xff0c;TensorFlow 2.0.0 2、下载代码&#xff1a;https://github.com/aiff22/DPEDx 3、将要增强的照片放在以下目录中&#xff0c;没有就新建&#xff1a; dpe…

基于改进YOLOv7的绝缘子缺陷检测算法

摘要 现有的检测方法面临着巨大的挑战&#xff0c;在识别绝缘子的微小缺陷时&#xff0c;针对输电线路图像与复杂的背景。为保证输电线路的安全运行&#xff0c;提出一种改进的YOLOv 7模型&#xff0c;以提高检测结果。 首先&#xff0c;基于K-means对绝缘子数据集的目标盒进…

Python并行编程详解:发挥多核优势的艺术

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com 在当今计算机时代&#xff0c;充分发挥多核处理器的性能是提高程序运行效率的关键。Python作为一门强大的编程语言&#xff0c;提供了多种并行编程工具和库。本文将深入介绍Python中的并行编程&#xff0c;探讨如…

Python命名规范中的[单/双][前导/后缀]下划线小结

如图所示 出处 Single and Double Underscores in Python Names