7.串口通信uart编写思路及自定义协议

前言:

        串口是很重要的,有许多模块通信接口就是串口,例如gps模块,蓝牙模块,wifi模块还有一些精度比较高的陀螺仪模块等等,所以学会了串口之后,这些听起来很牛批的模块都能够用起来了。此外,单片机的之间的通信,也大多用串口,如距离比较长的RS485,RS232,光纤通信等等有线通信,也只是电平转换芯片不一样,但是代码层面完成是一样的,作为单片机开发串口是很必要熟练的。在学习的第二阶段,尽量还是照着手册来编写代码,或者说,根据自己的思路来嫖代码,而不是像初次学习一样代码、思路都嫖别人的。这样才能最大限度的检验自己的能力,当然,做项目怎样都成,怎么方便怎么来。

思路:

       下面就来记录记录我个人的编码思路,首先由下图可以看到,串口的模式还是挺多的:

        这样相应的寄存器也就必然很多,所以从一开始就需要明确我们需要的是哪种模式,然后就只关注这个模式,与之无关的寄存器都可以忽略,如此编码就简单清晰了。以最常用的异步模式为例:

        手册没有讲初始化流程,所以只能按照经验来写代码了,回忆串口无非就是:串口时钟使能,配置数据位,停止位等,配置波特率,使能串口,从寄存器读出数据/向寄存器写入数据。一般为了方便数据处理,还加一个接收中断。但是~串口不只是串口,还涉及GPIO初始化,GPIO复用配置。

1.初始化GPIO相关配置

三部曲:时钟,IO,复用啥

        GPIOx->AFR这个寄存器就是将某个GPIO管脚复用成指定功能的。下面AF虽多,但是要根据数据手册引脚说明来选,芯片没有设计的当然选了也没用。我没有在手册找到AF对应的是什么,不过正点原子的代码有写,也不知哪里找的。

//AF0~15设置情况(这里仅是列出常用的,详细的请见407数据手册,56页Table 7):
//AF0:MCO/SWD/SWCLK/RTC   AF1:TIM1/TIM2;            AF2:TIM3~5;               AF3:TIM8~11
//AF4:I2C1~I2C3;          AF5:SPI1/SPI2;            AF6:SPI3;                 AF7:USART1~3;
//AF8:USART4~6;           AF9;CAN1/CAN2/TIM12~14    AF10:USB_OTG/USB_HS       AF11:ETH
//AF12:FSMC/SDIO/OTG/HS   AF13:DCIM                 AF14:                     AF15:EVENTOUT

 编码如下:

1.时钟
RCC->AHB1ENR|=1<<0;   	//GPIOA时钟附属于AHB1
2.IO  
GPIO_Set(GPIOA,PIN9|PIN10,GPIO_MODE_AF,0,0,0);//PA9,PA10,都配置为复用模式,其他电气属性如上下拉之类的可以根据需要配置,不配置也行的。
3.复用啥,直接用正点原子的函数,里面其实就是对GPIOx->AFRH和GPIOx->AFRL这两个寄存器进行编写,不过正点原子这个封装的挺好的,一目了然
GPIO_AF_Set(GPIOA,9,7);	//PA9,AF7
GPIO_AF_Set(GPIOA,10,7);//PA10,AF7  	   

2.串口相关初始化

目的是:串口时钟使能,配置数据位,停止位,接收中断,使能串口等,配置波特率,从寄存器读出数据/向寄存器写入数据。

由手册第66页可知,USART1时钟隶属于APB2

1.使能串口1时钟    

 RCC->APB2ENR|=1<<4;   

2.配置波特率:

根据公式算,然后填到对应的位里面去

	float temp;
	u16 mantissa;    //整数部分
	u16 fraction;	 //小数部分
	temp=(float)(pclk2*1000000)/(bound*16);//得到USARTDIV@OVER8=0
	mantissa=temp;				 //得到整数部分
	fraction=(temp-mantissa)*16; //得到小数部分@OVER8=0 
    mantissa<<=4;
	mantissa+=fraction; 

 	USART1->BRR=mantissa; 	//波特率设置	 

这个是正点原子那嫖的,适用于多种时钟,多种波特率的情况,挺好用的。

3.配置数据位,停止位,中断等

USART_CR1检索:只看和异步通信有关的位,其他的不管

bit[2]:        接收使能

bit[3]:        发送使能

bit[5]:        接收中断使能

bit[10]:       关/开奇偶检验

bit[12]:       置零:1 起始位,8 数据位,n 停止位

bit[13]:        串口关闭/使能,后面记得给这个串口中断分组以及设置优先级

bit[15]:        0:16倍过采样率,1:8倍过采样率,这个是和波特率计算有关的,设为0

其他就无所谓了,好像这个寄存器就完全够配置我们所需了

USART1->CR1 = 0<<15 | 1<<13 | 0<<12 | 0<<10 | 1<<5 | 1<<3 | 1<<2 ;
//中断分组及优先级,中断后面有时间再讲(其核心思想就是分组,中断线,设优先级三部曲)
MY_NVIC_Init(3,3,USART1_IRQn,2);//组2,最低优先级 

4.完整的串口初始化代码如下:

void uart_init(u32 pclk2,u32 bound)
{ 
	float temp;
	u16 mantissa;
	u16 fraction;	   
    
    //1.GPIO初始化相关
	RCC->AHB1ENR|=1<<0;   	//使能PORTA口时钟  
	GPIO_Set(GPIOA,PIN9|PIN10,GPIO_MODE_AF,0,0,0);//PA9,PA10,复用功能
 	GPIO_AF_Set(GPIOA,9,7);	//PA9,AF7
	GPIO_AF_Set(GPIOA,10,7);//PA10,AF7  
	   
    //2.使能串口1时钟 
	RCC->APB2ENR|=1<<4;  	

	//3.波特率设置
	temp=(float)(pclk2*1000000)/(bound*16);//得到USARTDIV@OVER8=0
	mantissa=temp;				 //得到整数部分
	fraction=(temp-mantissa)*16; //得到小数部分@OVER8=0 
    mantissa<<=4;
	mantissa+=fraction; 
 	USART1->BRR=mantissa; 	//波特率设置	 
    
    //4.配置数据位,停止位,中断等
    USART1->CR1 = 0<<15 | 1<<13 | 0<<12 | 0<<10 | 1<<5 | 1<<3 | 1<<2 ;
    //中断分组及优先级,中断后面有时间再讲(其核心思想就是分组,中断线,设优先级三部曲)
    MY_NVIC_Init(3,3,USART1_IRQn,2);//组2,最低优先级 
}

运行效果:

其他代码不改动,换上自己思路写的代码运行ok:

3.中断服务函数

a.它最原始的模样:
void USART1_IRQHandler(void)
{
	u8 res;	

	if(USART1->SR&(1<<5))//接收到数据的标志置1---->>有数据
	{	 
		res=USART1->DR; //取出接收到的数据---->>1B
								     
	} 

} 

如果要发送数据,可以编写如下:

u8 res;
USART1->DR = res;//要发送的数据  1B
while((USART1->SR&0X40)==0);//等待发送结束
b.正点原子给的:
u8 USART_RX_BUF[USART_REC_LEN];     //里面存着接收到的数据

u16 USART_RX_STA=0;                 //是否有数据标志+接收到的字节数

//下面这个不用改它,原封不动放代码里就能用
void USART1_IRQHandler(void)
{
	u8 res;	
	if(USART1->SR&(1<<5))//接收到数据
	{	 
		res=USART1->DR; 
		if((USART_RX_STA&0x8000)==0)//接收未完成
		{
			if(USART_RX_STA&0x4000)//接收到了0x0d
			{
				if(res!=0x0a)USART_RX_STA=0;//接收错误,重新开始
				else USART_RX_STA|=0x8000;	//接收完成了 
			}else //还没收到0X0D
			{	
				if(res==0x0d)USART_RX_STA|=0x4000;
				else
				{
					USART_RX_BUF[USART_RX_STA&0X3FFF]=res;
					USART_RX_STA++;
					if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收	  
				}		 
			}
		}  		 									     
	} 

} 
									 

其中:

判断有无数据接收:

		if(USART_RX_STA&0x8000){。。。。。。}

得知数据共有多少B:

int len=USART_RX_STA&0x3fff;//得到此次接收到的数据长度

数据存放的数组:

USART_RX_BUF[]

相对来说以及挺方便的了~下面还有一个比赛常用的,自定义的协议

c.自定义协议:
首先在usart.c中加入变量:
/*更改变量 BEGIN-- */
uint8_t uart1_rxbuff;//引入该.h可使用
uint8_t uart2_rxbuff;//引入该.h可使用
uint8_t uart3_rxbuff;//引入该.h可使用

uint8_t sendBuf[1]; 
u8 uart1_sdbuffer[11]={0x2c,0x12,0x11,0x22,0x33,0x5b,0,0,0,0};//从索引2开始赋值
/*更改变量 END-- */
在usart.h中导出方便别的文件使用:
extern uint8_t uart1_rxbuff;
extern uint8_t uart2_rxbuff;
extern uint8_t uart3_rxbuff;

extern uint8_t uart1_sdbuffer[11];
下面是协议解析函数,自定义的协议是:

协议头0x2c,0x12

协议尾0x5b,想要让协议数据位变多,只需要修改变量RxBuffer1[]的定义即可

//解析接收的数据 最多11哥,两个帧头,一个帧尾,其他是数据位
void Portocol_Receive_Data(uint8_t com_data)
{
		uint8_t i;
		static uint8_t RxCounter1=0;//计数
		static uint8_t RxBuffer1[11]={0};
		static uint8_t RxState = 0;	
		static uint8_t RxFlag1 = 0;
        u8 pi=0;
        
        //printf("%x\t",com_data);//打印调试

		if(RxState==0&&com_data==0x2C)  //0x2c帧头 RxCounter1==1
		{
			
			RxState=1;
			RxBuffer1[RxCounter1++]=com_data;  
		}

		else if(RxState==1&&com_data==0x12)  //0x12帧头 RxCounter1==2
		{
			RxState=2;
			RxBuffer1[RxCounter1++]=com_data;
		}
		
		else if(RxState==2)//开始接收数据位
		{                     
			 
			RxBuffer1[RxCounter1++]=com_data;
			if(RxCounter1>=10||com_data == 0x5B)
			{
				//RxCounter1-1是帧尾
				if(RxBuffer1[RxCounter1-1] == 0x5B)//接收到贞结尾了
				{
                  /* USER CODE BEGIN 2 */
//                    for(i = 0; i <= 10; i++)
//                    {
//                        printf("%x\t",RxBuffer1[i]);
//                    }
//                    printf("\r\n");
                    USART1_Portocol_Send_Data();
//                    printf("\r\n");
                  /* USER CODE END 2 */
       
                    RxFlag1 = 0;
                    RxCounter1 = 0;
                    RxState = 0;
						
				}
				else   //接收错误
				{

                    RxState = 0;
                    RxCounter1=0;
                    for(i=0;i<11;i++)
                    {
                            RxBuffer1[i]=0x00;      //将存放数据数组清零
                    }
				}

			}
		}
		else   //接收异常
		{
				RxState = 0;
				RxCounter1=0;
				for(i=0;i<10;i++)
				{
						RxBuffer1[i]=0x00;      //将存放数据数组清零
				}
		}
}
中断服务函数是这样滴:
void USART1_IRQHandler(void)
{
    if(USART1->SR&(1<<5))//接收到数据
	{	
        uart1_rxbuff = USART1->DR;

        Portocol_Receive_Data(uart1_rxbuff);
    }
}
另外还有一个协议配套的发送函数:

要修改发送的内容只需修改uart1_sdbuffer数组的内容即可:

//串口X发送函数
void USART1_Portocol_Send_Data(void)
{
	   u8 i;
    
		for(i = 0; i <= 10; i++)
		{
            
            USART1->DR=uart1_sdbuffer[i];//要发送的数据  1B
            while((USART1->SR&0X40)==0);//等待发送结束

		}
}
效果如下:

在协议代码中,下面这部分就是给你自由发挥的,进到这段代码里说明成功接收到了按协议格式发来的信息;

4.拓展到其他串口:

复用到其他的串口也很简单,仿照把发送呀接收呀里面的寄存器改一改就行了

        比赛常用的还是自定义协议的串口,比如双车用蓝牙通讯呀,或者stm32和openmv通讯,几乎都要自己写一个协议去收发数据,这样才会可靠。

        完~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/262381.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RTP/RTCP/RTSP/SIP/SDP/RTMP对比

RTP&#xff08;Real-time Transport Protocol&#xff09;是一种用于实时传输音频和视频数据的协议。它位于传输层和应用层之间&#xff0c;主要负责对媒体数据进行分包、传输和定时。 RTCP&#xff08;Real-Time Control Protocol&#xff09;是 RTP 的控制协议&#xff0c;…

持续集成交付CICD:基于ArgoCD 的GitOps 自动化完成前端项目应用发布与回滚

目录 一、实验 1. 环境 2. K8S master节点部署Argo CD 3.基于ArgoCD 实现GitOps &#xff08;同步部署文件&#xff09; 4.基于ArgoCD 实现GitOps &#xff08;同步HELM文件&#xff09; 二、问题 1. ArgoCD 连接K8S集群状态为 Unknown 2.ArgoCD 创建application失败 …

03-JVM对象创建与内存分配机制深度剖析

文章目录 对象的创建对象创建的主要流程一、类加载检查二、分配内存划分内存的方法解决并发问题的方法 三、初始化零值四、设置对象头五、执行<init>方法 对象半初始化对象大小与指针压缩什么是java对象的指针压缩&#xff1f;为什么要进行指针压缩&#xff1f; 对象内存…

快速学习 webpack

目录 1. webpack基本概念 webpack能做什么&#xff1f; 2. webpack的使用步骤 2.1_webpack 更新打包 3. webpack的配置 3.1_打包流程图 3.2_案例-webpack隔行变色 3.3_插件-自动生成html文件 3.4_加载器 - 处理css文件问题 3.5_加载器 - 处理css文件 3.6_加载器 - 处…

【深入解析spring cloud gateway】12 gateway参数调优与分析

本节主要对网关主要的一些参数做一些解释说明&#xff0c;并用压测工具测试一下网关的接口&#xff0c;通过压测来验证参数配置是否合理 一、连接池参数 参数示例 spring:application:name: gatewaycloud:gateway:# http连接设置httpclient:# 全局的响应超时时间&#xff0c…

驱动开发的完善 --- 芯片手册导读 + I/O口操控代码的编写

在我上上节的博文中&#xff08;linux驱动的学习 & 驱动开发初识-CSDN博客&#xff09;&#xff1a; 我通过一个基本的字符设备驱动框架来测试了驱动的运行&#xff0c;但是在“pin4_open”和“pin4_write”这两个驱动函数的函数体里只写了一句内核打印的代码&#xff0c;作…

微软官方出品:GPT大模型编排工具,支持C#、Python等多个语言版本

随着ChatGPT的火热&#xff0c;基于大模型开发应用已经成为新的风口。虽然目前的大型模型已经具备相当高的智能水平&#xff0c;但它们仍然无法完全实现业务流程的自动化&#xff0c;从而达到用户的目标。 微软官方开源的Semantic Kernel的AI编排工具&#xff0c;就可以很好的…

【深度学习】注意力机制(七)Agent Attention

本文介绍Agent Attention注意力机制&#xff0c;Transformer中的Attention模块可以提取全局语义信息&#xff0c;但是计算量太大&#xff0c;Agent Attention是一种计算非常有效的Attention模块。 论文&#xff1a;Agent Attention: On the Integration of Softmax and Linear…

融资项目——vue之双向数据绑定

上一篇文章中使用的v-bind是单向绑定方法&#xff0c;即数据改变&#xff0c;网页相应的视图发生改变&#xff0c;但是网页视图发生改变其相关联的数据不会发生改变。但是双向数据绑定不同之处在于网页视图发生改变其相关联的数据也会发生改变。Vue可以使用v-model进行双向数据…

docker-compose安装Rocketmq总结,以及如何更换mq端口

默认你已经装好了docker哈 安装docker-compose sudo curl -L https://github.com/docker/compose/releases/download/1.25.1-rc1/docker-compose-uname -s-uname -m -o /usr/local/bin/docker-composechmod x /usr/local/bin/docker-composedocker-compose --version成功打印…

4.2 克隆

一&#xff0c;什么是克隆&#xff1f; 克隆是指通过共享缓冲区来复制内容&#xff08;例如&#xff0c;两个窗口共享相同的内容&#xff09;。 克隆可用于提高性能&#xff1a; 可以减少所需的更新次数。 你可以在多个显示器上显示内容&#xff0c;但只需要更新一个缓冲区…

C# 使用MSTest进行单元测试

目录 写在前面 代码实现 执行结果 写在前面 MSTest是微软官方提供的.NET平台下的单元测试框架&#xff1b;可使用DataRow属性来指定数据&#xff0c;驱动测试用例所用到的值&#xff0c;连续对每个数据化进行运行测试&#xff0c;也可以使用DynamicData 属性来指定数据&…

服务器数据恢复-服务器断电导致linux操作系统数据丢失的数据恢复案例

linux操作系统服务器数据恢复环境&#xff1a; 某品牌R730服务器MD3200系列存储&#xff0c;linux操作系统。 服务器故障&#xff1a; 机房意外断电导致服务器linux操作系统部分文件丢失。 服务器数据恢复过程&#xff1a; 1、将故障服务器连接到北亚企安数据恢复中心备份服务器…

vue3 组合式pinia的使用 案例

需求&#xff1a;用户登录时&#xff0c;结合session实现永久化存贮个人信息 import { computed, ref } from vue import { defineStore } from pinia import { logOn } from /service// sessionStorage的封装 import { SET_USER_TOKEN, STORAGE_GET, STORAGE_SET } from /util…

【PyTorch】代码学习

文章目录 直接定义nn.Sequential(), 然后append(),最后直接net(),少写很多forward&#xff0c;适合直连式网络 直接定义nn.Sequential(), 然后append(),最后直接net(),少写很多forward&#xff0c;适合直连式网络 代码来源&#xff1a;https://github.com/zshhans/MSD-Mixer/b…

ros2启动gazebo方式

我安装的是官方建议的gz-harxxx版本。就用这个启动 ros2 launch ros_ign_gazebo ign_gazebo.launch.py 哎我鼓捣了2个小时的东西&#xff0c;就这么公布出来好像有点不甘心啊&#xff0c;此文章全国第一个发布&#xff0c;没有之一

SQL指南:掌握日期函数来查询和管理数据

文章目录 1. 引言2. 建立数据库表2.1 建表语句2.2 数据插入 查询案例3.1 查询当前日期的订单3.2 查询过去一周内的订单3.3 查询明天的日期3.4 查询今年的订单3.5 查询特定月份的订单 总结 1. 引言 在数据库管理中&#xff0c;处理日期和时间是一项基本但重要的任务。本指南将通…

SpringCloudGateway网关处拦截并修改请求

SpringCloudGateway网关处拦截并修改请求 需求背景 老系统没有引入Token的概念&#xff0c;之前的租户Id拼接在请求上&#xff0c;有的是以Get&#xff0c;Param传参形式&#xff1b;有的是以Post&#xff0c;Body传参的。需要在网关层拦截请求并进行请求修改后转发到对应服务。…

Centos7在安装Graylog时新安装MongoDB报错端口不监听服务不启动无法运行启动失败

由于虚拟机服务器上需要安装Graylog需要安装MongoDB&#xff0c;尝试官网下载安装包&#xff0c;和yum安装均无法正常启动&#xff0c;折腾了好几天&#xff0c;重装了十几次&#xff0c;网上搜索了很多很多资料&#xff0c;均无法正常运行&#xff0c;百度上搜索各种文档&…

内网穿透的应用-Docker本地部署青龙面板并实现公网远程访问管理界面

文章目录 一、前期准备本教程环境为&#xff1a;Centos7&#xff0c;可以跑Docker的系统都可以使用。本教程使用Docker部署青龙&#xff0c;如何安装Docker详见&#xff1a; 二、安装青龙面板三、映射本地部署的青龙面板至公网四、使用固定公网地址访问本地部署的青龙面板 青龙…