Hive执行计划

        Hive提供了explain命令来展示一个查询的执行计划,这个执行计划对于我们了解底层原理,Hive 调优,排查数据倾斜等很有帮助。

使用语法如下:

explain query;

在 hive cli 中输入以下命令(hive 2.3.7):

explain select sum(id) from test1;

得到结果:

STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 depends on stages: Stage-1

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: test1
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Select Operator
              expressions: id (type: int)
              outputColumnNames: id
              Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
              Group By Operator
                aggregations: sum(id)
                mode: hash
                outputColumnNames: _col0
                Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  sort order:
                  Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
                  value expressions: _col0 (type: bigint)
      Reduce Operator Tree:
        Group By Operator
          aggregations: sum(VALUE._col0)
          mode: mergepartial
          outputColumnNames: _col0
          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
          File Output Operator
            compressed: false
            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
            table:
                input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink

我们将上述结果拆分看,先从最外层开始,包含两个大的部分:

  1. stage dependencies:各个stage之间的依赖性

  2. stage plan:各个stage的执行计划

先看第一部分 stage dependencies ,包含两个 stage,Stage-1 是根stage,说明这是开始的stage,Stage-0 依赖 Stage-1,Stage-1执行完成后执行Stage-0。

再看第二部分 stage plan,里面有一个 Map Reduce,一个MR的执行计划分为两个部分:

  1. Map Operator Tree:MAP端的执行计划树

  2. Reduce Operator Tree:Reduce端的执行计划树

这两个执行计划树里面包含这条sql语句的 operator:

  1. TableScan:表扫描操作,map端第一个操作肯定是加载表,所以就是表扫描操作,常见的属性:

    • alias:表名称

    • Statistics:表统计信息,包含表中数据条数,数据大小等

  2. Select Operator:选取操作,常见的属性 :

    • expressions:需要的字段名称及字段类型

    • outputColumnNames:输出的列名称

    • Statistics:表统计信息,包含表中数据条数,数据大小等

  3. Group By Operator:分组聚合操作,常见的属性:

    • aggregations:显示聚合函数信息

    • mode:聚合模式,值有 hash:随机聚合,就是hash partition;partial:局部聚合;final:最终聚合

    • keys:分组的字段,如果没有分组,则没有此字段

    • outputColumnNames:聚合之后输出列名

    • Statistics:表统计信息,包含分组聚合之后的数据条数,数据大小等

  4. Reduce Output Operator:输出到reduce操作,常见属性:

    • sort order:值为空 不排序;值为 + 正序排序,值为 - 倒序排序;值为 +-  排序的列为两列,第一列为正序,第二列为倒序

  5. Filter Operator:过滤操作,常见的属性:

    • predicate:过滤条件,如sql语句中的where id>=1,则此处显示(id >= 1)

  6. Map Join Operator:join 操作,常见的属性:

    • condition map:join方式 ,如Inner Join 0 to 1 Left Outer Join0 to 2

    • keys: join 的条件字段

    • outputColumnNames:join 完成之后输出的字段

    • Statistics:join 完成之后生成的数据条数,大小等

  7. File Output Operator:文件输出操作,常见的属性

    • compressed:是否压缩

    • table:表的信息,包含输入输出文件格式化方式,序列化方式等

  8. Fetch Operator 客户端获取数据操作,常见的属性:

    • limit,值为 -1 表示不限制条数,其他值为限制的条数。

定位产生数据倾斜的代码段

数据倾斜大多数都是大 key 问题导致的。

如何判断是大 key 导致的问题,可以通过下面方法:

1. 通过时间判断

        如果某个 reduce 的时间比其他 reduce 时间长的多,如下图,大部分 task 在 1 分钟之内完成,只有 r_000000 这个 task 执行 20 多分钟了还没完成。

定位 SQL 代码

确定任务卡住的 stage

  • 通过 jobname 确定 stage:
    一般 Hive 默认的 jobname 名称会带上 stage 阶段,如下通过 jobname 看到任务卡住的为 Stage-4:


 

  • 如果 jobname 是自定义的,那可能没法通过 jobname 判断 stage。需要借助于任务日志:
    找到执行特别慢的那个 task,然后 Ctrl+F 搜索 “CommonJoinOperator: JOIN struct” 。Hive 在 join 的时候,会把 join 的 key 打印到日志中。如下:

上图中的关键信息是:struct<_col0:string, _col1:string, _col3:string>

这时候,需要参考该 SQL 的执行计划。通过参考执行计划,可以断定该阶段为 Stage-4 阶段

2. 确定 SQL 执行代码

确定了执行阶段,即 Stage-4 阶段。通过执行计划,则可以判断出是执行哪段代码时出现了倾斜。还是从此图,这个 Stage-4 阶段中进行连接操作的表别名是 d:

就可以推测出是在执行下面红框中代码时出现了数据倾斜,因为这行的表的别名是 d:


以上仅列举了4个我们生产中既熟悉又有点迷糊的例子,explain 还有很多其他的用途,如查看stage的依赖情况、hive 调优等,小伙伴们可以自行尝试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/262307.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Flink系列之:背压下的检查点

Flink系列之&#xff1a;背压下的检查点 一、Checkpointing under backpressure二、缓冲区 Debloating三、非对齐 Checkpoints四、对齐 Checkpoint 的超时五、限制六、故障排除 一、Checkpointing under backpressure 通常情况下&#xff0c;对齐 Checkpoint 的时长主要受 Che…

使用Pycharm一键将.ui文件生成.py文件配置教程、一键打开QTDesigner教程

2df3621a-7ffd-4f18-9735-b86464b83a5b 前言 我痛恨所有将白嫖归为理所应当的猪&#x1f416;。 教程 打开pycharm之后&#xff0c;依次点击File->Settings->Tools->External Tools&#xff0c;进入如下界面&#xff1a; 1、配置快捷打开Qt Designer 点击号&…

基于深度学习的森林火焰烟雾检测系统(含UI界面,yolov8、Python代码,数据集)

项目介绍 项目中所用到的算法模型和数据集等信息如下&#xff1a; 算法模型&#xff1a;     yolov8 yolov8主要包含以下几种创新&#xff1a;         1. 添加注意力机制&#xff08;SE、CBAM等&#xff09;         2. 修改可变形卷积&#xff08;DySnake-主干c…

gem5 RubyPort: mem_request_port作用与连接 simple-MI_example.py

简介 回答这个问题&#xff1a;RubyPort的口下&#xff0c;一共定义了六个口&#xff0c;分别是mem_request_port&#xff0c;mem_response_port&#xff0c;pio_request_port&#xff0c;pio_response_port&#xff0c;in_ports, interrupt_out_ports&#xff0c;他们分别有什…

YOLOv8改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)

一、本文介绍 本文给大家带来的改进机制是MobileNetV2&#xff0c;其是专为移动和嵌入式视觉应用设计的轻量化网络结构。其在MobilNetV1的基础上采用反转残差结构和线性瓶颈层。这种结构通过轻量级的深度卷积和线性卷积过滤特征&#xff0c;同时去除狭窄层中的非线性&#xff…

Circulation:室性早搏会增加不良心血管事件|UK Biobank周报(12.14)

欢迎报名2023年郑老师团队课程&#xff01; 郑老师科研统计培训&#xff0c;包括临床数据、公共数据分析课程等&#xff0c;欢迎报名 英国生物银行&#xff08;UK Biobank&#xff0c;UKB&#xff09;是英国迄今以来规模最大的有关致病或预防疾病的基因和环境因子的信息资源库。…

【案例】图片预览

效果图 如何让图片放大&#xff0c;大多数的UI组件都带有这种功能&#xff0c;今天给大家介绍的这个插件除了放大之外&#xff0c;还可以旋转、移动、翻转、旋转、二次放大&#xff08;全屏&#xff09; 实现 npm i v-viewer -Smain.js 中引入 import viewerjs/dist/viewer.c…

java并发编程六 共享模型之内存

文章目录 Java 内存模型可见性解决方法 有序性解决方法 Java 内存模型 JMM 即 Java Memory Model&#xff0c;它定义了主存、工作内存抽象概念&#xff0c;底层对应着 CPU 寄存器、缓存、硬件内存、CPU 指令优化等。 JMM 体现在以下几个方面 原子性 - 保证指令不会受到线程上…

前端ICON库

前端ICON库 1.mingcute mingcute 2.lordicon lordicon 3.字节iconpark&#xff08;推荐&#xff09; 字节iconpark 4.iconbuddy iconbuddy.app/ 5.商标寻找youicons 免费下载数百万个徽标以获得设计灵感 | YouIcons.com 还有一堆工具

黑盒测试中的完整性测试:确保系统的功能完整性

在软件开发过程中&#xff0c;为了保证系统的质量和可靠性&#xff0c;测试是一个不可或缺的环节。而黑盒测试作为常用的测试方法之一&#xff0c;以用户的角度出发&#xff0c;测试系统在不知道内部工作原理的情况下&#xff0c;对输入数据的处理和输出结果的正确性进行验证。…

如何直接使用别人的Python项目的虚拟环境

Cannot set up a python SDK at Python 3.10 (flaskTest) (2) (H:\WorkPlace\PyWorkPlace\flaskTest\flaskTest\venv\Scripts\python.exe). The SDK seems invalid 如何复制别人的虚拟环境 修改步骤 1. 修改pyvenv.cfg文件里的home和version 2. Scripts\activate以及Scripts\a…

助力工业产品质检,基于YOLOv8开发构建智能PCB电路板质检分析系统

AI助力工业质检智能生产制造已经有很多成功的实践应用了&#xff0c;在我们前面的系列博文中也有很多对应的实践&#xff0c;感兴趣的话可以自行移步阅读前面的博文即可&#xff1a; 《助力质量生产&#xff0c;基于目标检测模型MobileNetV2-YOLOv3-Lite实现PCB电路板缺陷检测…

【算法】算法题-20231221

这里写目录标题 一、830. 较大分组的位置二、657. 机器人能否返回原点三、771. 宝石与石头 一、830. 较大分组的位置 在一个由小写字母构成的字符串 s 中&#xff0c;包含由一些连续的相同字符所构成的分组。 例如&#xff0c;在字符串 s "abbxxxxzyy"中&#xff0…

九、W5100S/W5500+RP2040之MicroPython开发<HTTPOneNET示例>

文章目录 1. 前言2. 平台操作流程2.1 创建设备2.2 创建数据流模板 3. WIZnet以太网芯片4. 示例讲解以及使用4.1 程序流程图4.2 测试准备4.3 连接方式4.4 相关代码4.5 烧录验证 5. 注意事项6. 相关链接 1. 前言 在这个智能硬件和物联网时代&#xff0c;MicroPython和树莓派PICO正…

依托亚马逊云科技构建韧性应用

背景 现代业务系统受到越来越多的韧性相关的挑战&#xff0c;特别是客户要求他们的业务系统 724 不间断的运行。因此&#xff0c;韧性对于云的基础设施和应用系统有着至关重要的作用。 亚马逊云科技把韧性视为一项最基本的工作&#xff0c;为了让我们的业务系统能持续优雅地提供…

LLM之RAG实战(七)| 使用llama_index实现多模态RAG

一、多模态RAG OpenAI开发日上最令人兴奋的发布之一是GPT-4V API&#xff08;https://platform.openai.com/docs/guides/vision&#xff09;的发布。GPT-4V是一个多模态模型&#xff0c;可以接收文本/图像&#xff0c;并可以输出文本响应。最近还有一些其他的多模态模型&#x…

【大数据存储与处理】实验二 HBase 过滤器操作

实验二 HBase 过滤器操作 【实验目的】&#xff1a; 1.掌握使用 HBase 过滤器进行全表扫描。 【实验内容与要求】&#xff1a; 在 HBase 中&#xff0c;Get 和 Scan 操作都可以使用过滤器来设置输出的范围&#xff0c;类似于 SQL 里面 的 Where 查询条件。使用 show_filte…

中国自动驾驶行业:迈向无限可能

中国自动驾驶行业正在经历蓬勃发展&#xff0c;取得了令人瞩目的成果。这一行业在技术创新、政策支持和市场需求等方面展现出巨大潜力。本文将从技术创新、产业生态和前景发展等角度&#xff0c;探讨中国自动驾驶行业的现状和未来前景。 中国自动驾驶行业正处于一个令人瞩目的快…

Codeforces Round 638 (Div. 2)B. Phoenix and Beauty(思维构造)

B. Phoenix and Beauty 这道题目学到的东西&#xff1a; 从给出的数据范围观察&#xff0c;得到一些有用信息&#xff08;峰哥教的&#xff09;考虑无解的情况‘ 其实这题考虑怎么操作是比较难的&#xff0c;如果能想出来满足条件的结果就比较好了&#xff08;我在说什么我自…

ASP.NET Core基础之定时任务(二)-Quartz.NET入门

阅读本文你的收获 了解任务调度框架QuartZ.NET的核心构成学会在ASP.NET Core 中使用QuartZ.NET 在项目的开发过程中&#xff0c;难免会遇见需要后台处理的任务&#xff0c;例如定时发送邮件通知、后台处理耗时的数据处理等&#xff0c;上次分享了ASP.NET Core中实现定时任务的…