逻辑回归(LR,Logistic Regression)算法 简介

逻辑回归(LR,Logistic Regression)算法

当线性回归的预测结果,由于受到个别极端数值的影响而不准的时候, 可以用逻辑回归来解决.

逻辑回归模型的输出只能在 0 到 1 之间,也就是表达一个事件会发生的概率,所以被广泛地应用在分类问题上。

平滑函数

平滑函数: 把线性回归预测到的具体的值,通过一个函数转化成为 0~1 的一个概率值.

常见的平滑函数:

  • 高斯函数(Gaussian Function)
  • sigmoid 函数
  • tanh 函数
  • B样条函数(B-Spline Function)
  • Loess 平滑函数
  • 移动平均(Moving Average)

点击查看平滑函数详情: https://blog.csdn.net/galoiszhou/article/details/135133991

损失函数

逻辑回归的损失函数通常是对数损失函数(Logarithmic Loss),也称为对数似然损失(Log-Likelihood Loss)或交叉熵损失(Cross-Entropy Loss)。

在这里插入图片描述

  • n 是样本数量。
  • yi 是样本 i 的实际标签(1 表示正例,0 表示负例)。
  • pi 是模型对样本 i 预测为正例的概率。

对数损失函数的目标是最小化模型对于正例和负例的预测概率与实际标签之间的差异。当模型的预测概率与实际标签一致时,对数损失趋近于0。随着预测概率与实际标签的差异增大,对数损失逐渐增大。

逻辑回归算法的优点:

  • 继承了线性回归算法的全部优点
    • 运算效率高
    • 可解释性强
  • 减少了极端值对于整体分布的影响, 让整体的分布更加集中

逻辑回归算法的缺点:

  • 如果事物不是简单的线性分布, 则结果也不会很理想

逻辑回归算法的适用场景:

  • 二分类问题
    • 逻辑回归最适用于解决二分类问题,其中目标是将实例划分为两个类别,如正例和负例。
  • 线性可分数据
    • 当数据在特征空间中呈现线性可分布时,逻辑回归通常表现较好。这意味着可以通过一条直线将两个类别分开。
  • 高维数据
    • 逻辑回归在高维数据集上的表现通常较好,尤其是当特征的数量相对较大时。
  • 概率建模
    • 当任务需要建模概率时,例如对某个事件发生的概率进行预测,逻辑回归是一个自然的选择。
  • 特征之间相对独立
    • 逻辑回归假设特征之间相对独立,因此在特征之间存在共线性的情况下,可能需要额外的处理或者考虑其他算法。
  • 噪声较小
    • 逻辑回归对噪声相对不敏感,因此在数据相对干净的情况下,表现较好。
  • 大规模数据集
    • 逻辑回归的计算开销相对较小,适用于大规模数据集。
  • 可解释性需求
    • 逻辑回归提供了直观的可解释性,可以理解各个特征对预测的影响程度,因此在可解释性要求较高的场景中很有用。
  • 快速原型开发
    • 由于逻辑回归的简单性和高效性,它是快速原型开发的好选择,特别是当问题的复杂性不要求使用更复杂的模型时。

逻辑回归算法的案例:

  • 垃圾邮件过滤
    • 逻辑回归常用于垃圾邮件过滤,通过分析邮件内容和发送者的特征,预测邮件是否是垃圾邮件。
  • 疾病预测
    • 在医学领域,逻辑回归可用于预测患者是否患有某种疾病,基于患者的医疗历史、生活习惯等特征。
  • 信用评分
    • 逻辑回归在信用评分模型中得到广泛应用,用于预测借款人是否会违约,从而帮助银行和金融机构评估风险。
  • 广告点击率预测
    • 在在线广告领域,逻辑回归可用于预测用户是否会点击某个广告,以优化广告投放策略。
  • 客户流失预测
    • 逻辑回归可以用于预测客户是否有流失的风险,帮助企业采取措施留住客户。
  • 人才招聘
    • 在招聘领域,逻辑回归可用于预测求职者是否适合特定的职位,以辅助招聘决策。
  • 社交网络分析
    • 逻辑回归可以用于社交网络中的分析,例如预测用户是否会在社交平台上分享某种类型的内容。
  • 电商推荐系统
    • 在电商领域,逻辑回归可用于个性化推荐系统,预测用户是否对某个产品感兴趣。
  • 网络安全
    • 逻辑回归可以用于网络安全中的异常检测,例如预测网络中是否存在异常登录行为。
  • 学生成功预测
    • 在教育领域,逻辑回归可用于预测学生是否能够成功完成某门课程,帮助学校提供个性化的教育支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/262187.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从0开始学Git指令

从0开始学Git指令 因为网上的git文章优劣难评,大部分没有实操展示,所以打算自己从头整理一份完整的git实战教程,希望对大家能够起到帮助! 初始化一个Git仓库,使用git init命令。 添加文件到Git仓库,分两步…

Vue.js 教程

Vue.js(读音 /vjuː/, 类似于 view) 是一套构建用户界面的渐进式框架。 Vue 只关注视图层, 采用自底向上增量开发的设计。 Vue 的目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件。 阅读本教程前,您需要了解的…

万德高科携手航天科技AIRIOT打造智慧能碳管理平台, 助力碳达峰碳中和

“十四五”时期,我国生态文明建设进入了以降碳为重点战略方向、推动减污降碳协同增效、促进经济社会发展全面绿色转型、实现生态环境质量改善由量变到质变的关键时期。“实施数字化赋能行动”,聚焦能源管理、节能降碳、低碳能力等典型场景,推…

node实现简单的数据爬虫

前言 我使用的是墨迹天气的页面,因为这个使用的链接简单 页面结构简单并且大都是文字形式 第一步 打开墨迹天气网址 随便点开一个页面 点击F12或者鼠标右键点击检查 查看页面的信息 分析页面内容 使用文字所在的class和标签来定位 编写代码 配置express环境 …

EasyExcel 导出文件的格式化

阿里开源的这个库,让 Excel 导出不再复杂(既要能写,还要写的好看) 之前聊了 EasyExcel 的内容导出,本文主要说一下导出文件的格式化,格式化包括工作表/单元格样式和内容格式化。毕竟,有时候还是…

Opencv入门五 (显示图片灰度值)

源码如下&#xff1a; #include <opencv2/opencv.hpp> int main(int argc, char** argv) { cv::Mat img_rgb, img_gry, img_cny; cv::namedWindow("Example Gray",cv::WINDOW_AUTOSIZE); cv::namedWindow("Example Canny", cv::WINDOW_…

ruoyi若依前后端分离版部署centos7服务器(全)

目录 VMware虚拟机 centos7 安装环境如下 一、msql 5.7 二、nginx1.23.3 三、java8 四、redis 3.2.1 五、部署若依前端 六、部署若依后端 前言 虚拟机的桥接与nat模式 : 重点 重点&#xff01;&#xff01;&#xff01; 无线不可以用桥接模式 &#xff0c;而你用了nat模式会…

苹果cms模板MXone V10.7魔改版源码/ 苹果cms主题源码/苹果cmsv10模板MXone自适应模板/全开源无授权无加密

源码简介&#xff1a; 苹果cms模板MXone V10.7魔改版源码、苹果cms主题源码&#xff0c;作为苹果cmsv10模板MXone自适应模板&#xff0c;它是全开源无授权无加密。二开优化修复开源版影视网站源码。 MXone自适应模板&#xff0c;苹果cms v10开源无授权无加密电影网站模板。原…

Html / CSS刷题笔记

WebKit是一个开源的浏览器引擎&#xff0c;它最初是由苹果公司开发的&#xff0c;并且被广泛用于Safari浏览器和其他基于WebKit的浏览器&#xff0c;比如Google Chrome的早期版本。它也是构建许多移动设备浏览器的基础。WebKit的主要功能是解析HTML和CSS&#xff0c;并将其渲染…

SQL---Zeppeline前驱记录与后驱记录查询

内容导航 类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统…

前后端实现解析用户请求ip地址

前言 在我的软件系统中,如果希望安全系数高一些的话,往往会有用户登陆行为表来记录用户登陆行为,保障用户账号安全,比如记录登陆地址,每次登陆时候读取数据最近几次登陆地点,进行账号安全验证 假如以下是我的用户登陆行为表 实现获取用户登陆地址的方法有很多种,比如通过前端整…

听GPT 讲Rust源代码--src/tools(18)

File: rust/src/tools/rust-analyzer/crates/ide-ssr/src/from_comment.rs 在Rust源代码中的from_comment.rs文件位于Rust分析器&#xff08;rust-analyzer&#xff09;工具的ide-ssr库中&#xff0c;它的作用是将注释转换为Rust代码。 具体来说&#xff0c;该文件实现了从注…

机器学习 | 概率图模型

见微知著&#xff0c;睹始知终。 见到细微的苗头就能预知事物的发展方向&#xff0c;能透过微小的现象看到事物的本质&#xff0c;推断结论或者结果。 概率模型为机器学习打开了一扇新的大门&#xff0c;将学习的任务转变为计算变量的概率分布。 实际情况中&#xff0c;各个变量…

java easyexcel上传和下载数据

安装依赖 easyexcel官方文档 <!--通过注解的方式导出excel--><dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.3.1</version></dependency>注意踩坑&#xff1a;easyexcel会…

Linux服务器 部署飞书信息发送服务

项目介绍&#xff1a; 飞书信息发送服务是指将飞书信息发送服务部署到一个Linux服务器上。飞书是一款企业级的即时通讯和协作工具&#xff0c;支持发送消息给飞书的功能。通过部署飞书信息发送服务&#xff0c;可以方便内网发送信息给外网飞书。 项目代码结构展示&#xff1a; …

51单片机(STC8)-- 串口配置及串口重定向(printf)

文章目录 STC8串口概述串口寄存器配置串口1控制寄存器SCON串口1数据寄存器SBUF串口1模式 1工作方式串口1波特率计算方式 串口注意事项串口1通信demo串口重定向 STC8串口概述 由下图可知STC8H3K64S4带有4个4个串行通信接口&#xff0c;芯片名后两位S所带的数字即代表这款芯片带…

用户管理第2节课--idea 2023.2 后端--实现基本数据库操作(操作user表) -- 自动生成

一、插件 Settings... 1.1 File -- Settings 1.2 Settings -- Plugins 1.2.1 搜索框&#xff0c;也可以直接搜索 1.3 Plugins -- 【输入 & 搜索】mybatis 1.3.1 插件不同功能介绍 1.3.2 翻译如下 1.4 选中 Update&#xff0c;更新下 1.4.1 更新中 1.4.2 Restart IDE 1…

华为全屋wifi6蜂鸟套装标准

华为政企42 华为政企 目录 上一篇华为安防监控摄像头下一篇华为企业级无线路由器

STM32CubeMX驱动ST7789

环境 1、单片机:STM32F103C8T6 2、开发平台&#xff1a;STM32CUBEMXkeil mdk 3、屏幕&#xff1a;ST7789&#xff0c;分辨率240*240 STM32配置 1、使用硬件SPI1驱动屏幕。配置如下&#xff1a; 2、屏幕控制引脚配置&#xff1a; 注意&#xff1a;只配置了DC,RST,CS这3个控…

重塑数字生产力体系,生成式AI将开启云计算未来新十年?

科技云报道原创。 今天我们正身处一个历史的洪流&#xff0c;一个巨变的十字路口。生成式AI让人工智能技术完全破圈&#xff0c;带来了机器学习被大规模采用的历史转折点。 它掀起的新一轮科技革命&#xff0c;远超出我们今天的想象&#xff0c;这意味着一个巨大的历史机遇正…