目录
一.安装elasticsearch
1.拉取镜像
2.创建存放数据及配置文件的文件夹,启动时挂载。
4.修改文件夹权限
5.启动容器
5.1参数解释
6.安装ik分词器
6.2测试一下Ik分词器
二.添加文章索引库
1查询所有的文章信息,批量导入到es索引库中
2)测试
三.文章搜索功能实现
(1)导入 heima-leadnews-search
(2)在heima-leadnews-service的pom中添加依赖
(3)nacos配置中心leadnews-search
2搜索接口定义
3业务层实现
四.文章自动审核构建索引
文章微服务发送消息
1.把SearchArticleVo放到model工程下
2.文章微服务的ArticleFreemarkerService中的buildArticleToMinIO方法中收集数据并发送消息
3. 在ArticleConstants类中添加新的常量,完整代码如下
4.文章微服务集成kafka发送消息
搜索微服务接收消息并创建索引
5.定义监听接收消息,保存索引数据
五.保存用户搜索记录
1.MongoDB安装及集成
2.保存搜索记录
3.用户搜索记录对应的集合,对应实体类:
4.实现步骤
4.1:pom依赖
4.2:nacos配置
4.3.创建ApUserSearchService新增insert方法
4.4参考自媒体相关微服务,在搜索微服务中获取当前登录的用户
4.5.在ArticleSearchService的search方法中调用保存历史记录
4.6.保存历史记录中开启异步调用,添加注解@Async
4.7在搜索微服务引导类上开启异步调用
4.8测试,搜索后查看结果
六.查询用户搜素记录编辑
控制器
七.删除用户搜索记录
八.联想词搜索
搜索词-数据来源
功能实现
一.安装elasticsearch
1.拉取镜像
docker pull elasticsearch:7.7.0
2.创建存放数据及配置文件的文件夹,启动时挂载。
mkdir -p /home/elasticsearch/data/
mkdir -p /home/elasticsearch/config/
3.编写配置文件
echo 'http.host: 0.0.0.0
http.cors.enabled: true
http.cors.allow-origin: "*" '>>/home/elasticsearch/config/elasticsearch.yml
4.修改文件夹权限
chmod -R 777 /home/elasticsearch/
ls -l # 查看文件权限
5.启动容器
docker run --name elasticsearch -p 9200:9200 \
-p 9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms64m -Xmx128m" \
-v /home/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /home/elasticsearch/data:/usr/share/elasticsearch/data \
-v /home/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.7.0
5.1参数解释
--name elasticsearch:将容器命名为 elasticsearch
-p 9200:9200:将容器的9200端口映射到宿主机9200端口
-p 9300:9300:将容器的9300端口映射到宿主机9300端口,目的是集群互相通信
-e "discovery.type=single-node":单例模式
-e ES_JAVA_OPTS="-Xms64m -Xmx128m":配置内存大小
-v /mydata/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml:将配置文件挂载到宿主机
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data:将数据文件夹挂载到宿主机
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins:将插件目录挂载到宿主机(需重启)
-d elasticsearch:7.7.0:后台运行容器,并返回容器ID
6.安装ik分词器
下载ik-7.70版本,两个版本要一致
上传到插件挂在目录下面
//进入plugins目录
cd /home/elasticsearch/plugins
//新建一个名字叫 ik 的文件夹
mkdir ik
//将下载的ik分词器插件压缩包上传到ik文件夹下,然后解压zip到当前目录
unzip elasticsearch-analysis-ik-7.8.0.zip
//最后给一下ik文件夹的权限
chmod -R 777 /home/elasticsearch/plugins/ik
//安装好后,检查下是否安装成功了
使用docker exec -it elasticsearch /bin/bash 命令 进入容器内部
进入容器的 cd /usr/share/elasticsearch/bin 目录
执行 elasticsearch-plugin list 命令(列出es安装的所有插件)
//如果列出了 ik 就说明es的ik中文分词器安装成功了
//装好ik分词器后,记得重启ES容器
docker restart elasticsearch
6.2测试一下Ik分词器
可以看到ik分词器成功的安装好了!
二.添加文章索引库
使用postman添加映射
put请求 : http://192.168.200.130:9200/app_info_article
{
"mappings":{
"properties":{
"id":{
"type":"long"
},
"publishTime":{
"type":"date"
},
"layout":{
"type":"integer"
},
"images":{
"type":"keyword",
"index": false
},
"staticUrl":{
"type":"keyword",
"index": false
},
"authorId": {
"type": "long"
},
"authorName": {
"type": "text"
},
"title":{
"type":"text",
"analyzer":"ik_smart"
},
"content":{
"type":"text",
"analyzer":"ik_smart"
}
}
}
}
1查询所有的文章信息,批量导入到es索引库中
package com.heima.es;
import com.alibaba.fastjson.JSON;
import com.heima.es.mapper.ApArticleMapper;
import com.heima.es.pojo.SearchArticleVo;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.xcontent.XContentType;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
import java.util.List;
@SpringBootTest
@RunWith(SpringRunner.class)
public class ApArticleTest {
@Autowired
private ApArticleMapper apArticleMapper;
@Autowired
private RestHighLevelClient restHighLevelClient;
/**
* 注意:数据量的导入,如果数据量过大,需要分页导入
* @throws Exception
*/
@Test
public void init() throws Exception {
//1.查询所有符合条件的文章数据
List<SearchArticleVo> searchArticleVos = apArticleMapper.loadArticleList();
//2.批量导入到es索引库
BulkRequest bulkRequest = new BulkRequest("app_info_article");
for (SearchArticleVo searchArticleVo : searchArticleVos) {
IndexRequest indexRequest = new IndexRequest().id(searchArticleVo.getId().toString())
.source(JSON.toJSONString(searchArticleVo), XContentType.JSON);
//批量添加数据
bulkRequest.add(indexRequest);
}
restHighLevelClient.bulk(bulkRequest, RequestOptions.DEFAULT);
}
}
2)测试
postman查询所有的es中数据 GET请求: http://192.168.200.130:9200/app_info_article/_search
三.文章搜索功能实现
(1)导入 heima-leadnews-search
(2)在heima-leadnews-service的pom中添加依赖
<!--elasticsearch-->
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.4.0</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-client</artifactId>
<version>7.4.0</version>
</dependency>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>7.4.0</version>
</dependency>
(3)nacos配置中心leadnews-search
spring:
autoconfigure:
exclude: org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration
elasticsearch:
host: 192.168.200.130
port: 9200
2搜索接口定义
package com.heima.search.controller.v1;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.search.dtos.UserSearchDto;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.io.IOException;
@RestController
@RequestMapping("/api/v1/article/search")
public class ArticleSearchController {
@PostMapping("/search")
public ResponseResult search(@RequestBody UserSearchDto dto) throws IOException {
return null;
}
}
UserSearchDto
package com.heima.model.search.dtos;
import lombok.Data;
import java.util.Date;
@Data
public class UserSearchDto {
/**
* 搜索关键字
*/
String searchWords;
/**
* 当前页
*/
int pageNum;
/**
* 分页条数
*/
int pageSize;
/**
* 最小时间
*/
Date minBehotTime;
public int getFromIndex(){
if(this.pageNum<1)return 0;
if(this.pageSize<1) this.pageSize = 10;
return this.pageSize * (pageNum-1);
}
}
3业务层实现
创建业务层接口:ApArticleSearchService
package com.heima.search.service;
import com.heima.model.search.dtos.UserSearchDto;
import com.heima.model.common.dtos.ResponseResult;
import java.io.IOException;
public interface ArticleSearchService {
/**
ES文章分页搜索
@return
*/
ResponseResult search(UserSearchDto userSearchDto) throws IOException;
}
实现类:
package com.heima.search.service.impl;
import com.alibaba.fastjson.JSON;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.common.enums.AppHttpCodeEnum;
import com.heima.model.search.dtos.UserSearchDto;
import com.heima.model.user.pojos.ApUser;
import com.heima.search.service.ArticleSearchService;
import com.heima.utils.thread.AppThreadLocalUtil;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.text.Text;
import org.elasticsearch.index.query.*;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightBuilder;
import org.elasticsearch.search.sort.SortOrder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
@Service
@Slf4j
public class ArticleSearchServiceImpl implements ArticleSearchService {
@Autowired
private RestHighLevelClient restHighLevelClient;
/**
* es文章分页检索
*
* @param dto
* @return
*/
@Override
public ResponseResult search(UserSearchDto dto) throws IOException {
//1.检查参数
if(dto == null || StringUtils.isBlank(dto.getSearchWords())){
return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
}
//2.设置查询条件
SearchRequest searchRequest = new SearchRequest("app_info_article");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
//布尔查询
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
//关键字的分词之后查询
QueryStringQueryBuilder queryStringQueryBuilder = QueryBuilders.queryStringQuery(dto.getSearchWords()).field("title").field("content").defaultOperator(Operator.OR);
boolQueryBuilder.must(queryStringQueryBuilder);
//查询小于mindate的数据
RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("publishTime").lt(dto.getMinBehotTime().getTime());
boolQueryBuilder.filter(rangeQueryBuilder);
//分页查询
searchSourceBuilder.from(0);
searchSourceBuilder.size(dto.getPageSize());
//按照发布时间倒序查询
searchSourceBuilder.sort("publishTime", SortOrder.DESC);
//设置高亮 title
HighlightBuilder highlightBuilder = new HighlightBuilder();
highlightBuilder.field("title");
highlightBuilder.preTags("<font style='color: red; font-size: inherit;'>");
highlightBuilder.postTags("</font>");
searchSourceBuilder.highlighter(highlightBuilder);
searchSourceBuilder.query(boolQueryBuilder);
searchRequest.source(searchSourceBuilder);
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
//3.结果封装返回
List<Map> list = new ArrayList<>();
SearchHit[] hits = searchResponse.getHits().getHits();
for (SearchHit hit : hits) {
String json = hit.getSourceAsString();
Map map = JSON.parseObject(json, Map.class);
//处理高亮
if(hit.getHighlightFields() != null && hit.getHighlightFields().size() > 0){
Text[] titles = hit.getHighlightFields().get("title").getFragments();
String title = StringUtils.join(titles);
//高亮标题
map.put("h_title",title);
}else {
//原始标题
map.put("h_title",map.get("title"));
}
list.add(map);
}
return ResponseResult.okResult(list);
}
}
新建控制器ArticleSearchController
package com.heima.search.controller.v1;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.search.dtos.UserSearchDto;
import com.heima.search.service.ArticleSearchService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.io.IOException;
@RestController
@RequestMapping("/api/v1/article/search")
public class ArticleSearchController {
@Autowired
private ArticleSearchService articleSearchService;
@PostMapping("/search")
public ResponseResult search(@RequestBody UserSearchDto dto) throws IOException {
return articleSearchService.search(dto);
}
}
需要在app的网关中添加搜索微服务的路由配置
#搜索微服务
- id: leadnews-search
uri: lb://leadnews-search
predicates:
- Path=/search/**
filters:
- StripPrefix= 1
启动项目进行测试,至少要启动文章微服务,用户微服务,搜索微服务,app网关微服务,app前端工程
四.文章自动审核构建索引
文章微服务发送消息
1.把SearchArticleVo放到model工程下
package com.heima.model.search.vos;
import lombok.Data;
import java.util.Date;
@Data
public class SearchArticleVo {
// 文章id
private Long id;
// 文章标题
private String title;
// 文章发布时间
private Date publishTime;
// 文章布局
private Integer layout;
// 封面
private String images;
// 作者id
private Long authorId;
// 作者名词
private String authorName;
//静态url
private String staticUrl;
//文章内容
private String content;
}
2.文章微服务的ArticleFreemarkerService中的buildArticleToMinIO方法中收集数据并发送消息
完整代码如下:
package com.heima.article.service.impl;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONArray;
import com.baomidou.mybatisplus.core.toolkit.Wrappers;
import com.heima.article.mapper.ApArticleContentMapper;
import com.heima.article.service.ApArticleService;
import com.heima.article.service.ArticleFreemarkerService;
import com.heima.common.constants.ArticleConstants;
import com.heima.file.service.FileStorageService;
import com.heima.model.article.pojos.ApArticle;
import com.heima.model.search.vos.SearchArticleVo;
import freemarker.template.Configuration;
import freemarker.template.Template;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.BeanUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import java.io.ByteArrayInputStream;
import java.io.InputStream;
import java.io.StringWriter;
import java.util.HashMap;
import java.util.Map;
@Service
@Slf4j
@Transactional
public class ArticleFreemarkerServiceImpl implements ArticleFreemarkerService {
@Autowired
private ApArticleContentMapper apArticleContentMapper;
@Autowired
private Configuration configuration;
@Autowired
private FileStorageService fileStorageService;
@Autowired
private ApArticleService apArticleService;
/**
* 生成静态文件上传到minIO中
* @param apArticle
* @param content
*/
@Async
@Override
public void buildArticleToMinIO(ApArticle apArticle, String content) {
//已知文章的id
//4.1 获取文章内容
if(StringUtils.isNotBlank(content)){
//4.2 文章内容通过freemarker生成html文件
Template template = null;
StringWriter out = new StringWriter();
try {
template = configuration.getTemplate("article.ftl");
//数据模型
Map<String,Object> contentDataModel = new HashMap<>();
contentDataModel.put("content", JSONArray.parseArray(content));
//合成
template.process(contentDataModel,out);
} catch (Exception e) {
e.printStackTrace();
}
//4.3 把html文件上传到minio中
InputStream in = new ByteArrayInputStream(out.toString().getBytes());
String path = fileStorageService.uploadHtmlFile("", apArticle.getId() + ".html", in);
//4.4 修改ap_article表,保存static_url字段
apArticleService.update(Wrappers.<ApArticle>lambdaUpdate().eq(ApArticle::getId,apArticle.getId())
.set(ApArticle::getStaticUrl,path));
//发送消息,创建索引
createArticleESIndex(apArticle,content,path);
}
}
@Autowired
private KafkaTemplate<String,String> kafkaTemplate;
/**
* 送消息,创建索引
* @param apArticle
* @param content
* @param path
*/
private void createArticleESIndex(ApArticle apArticle, String content, String path) {
SearchArticleVo vo = new SearchArticleVo();
BeanUtils.copyProperties(apArticle,vo);
vo.setContent(content);
vo.setStaticUrl(path);
kafkaTemplate.send(ArticleConstants.ARTICLE_ES_SYNC_TOPIC, JSON.toJSONString(vo));
}
}
3. 在ArticleConstants类中添加新的常量,完整代码如下
package com.heima.common.constants;
public class ArticleConstants {
public static final Short LOADTYPE_LOAD_MORE = 1;
public static final Short LOADTYPE_LOAD_NEW = 2;
public static final String DEFAULT_TAG = "__all__";
public static final String ARTICLE_ES_SYNC_TOPIC = "article.es.sync.topic";
public static final Integer HOT_ARTICLE_LIKE_WEIGHT = 3;
public static final Integer HOT_ARTICLE_COMMENT_WEIGHT = 5;
public static final Integer HOT_ARTICLE_COLLECTION_WEIGHT = 8;
public static final String HOT_ARTICLE_FIRST_PAGE = "hot_article_first_page_";
}
4.文章微服务集成kafka发送消息
在文章微服务的nacos的配置中心添加如下配置
kafka:
bootstrap-servers: 192.168.200.130:9092
producer:
retries: 10
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
搜索微服务接收消息并创建索引
spring:
kafka:
bootstrap-servers: 192.168.200.130:9092
consumer:
group-id: ${spring.application.name}
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
5.定义监听接收消息,保存索引数据
package com.heima.search.listener;
import com.alibaba.fastjson.JSON;
import com.heima.common.constants.ArticleConstants;
import com.heima.model.search.vos.SearchArticleVo;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.xcontent.XContentType;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import java.io.IOException;
@Component
@Slf4j
public class SyncArticleListener {
@Autowired
private RestHighLevelClient restHighLevelClient;
@KafkaListener(topics = ArticleConstants.ARTICLE_ES_SYNC_TOPIC)
public void onMessage(String message){
if(StringUtils.isNotBlank(message)){
log.info("SyncArticleListener,message={}",message);
SearchArticleVo searchArticleVo = JSON.parseObject(message, SearchArticleVo.class);
IndexRequest indexRequest = new IndexRequest("app_info_article");
indexRequest.id(searchArticleVo.getId().toString());
indexRequest.source(message, XContentType.JSON);
try {
restHighLevelClient.index(indexRequest, RequestOptions.DEFAULT);
} catch (IOException e) {
e.printStackTrace();
log.error("sync es error={}",e);
}
}
}
}
五.保存用户搜索记录
-
展示用户的搜索记录10条,按照搜索关键词的时间倒序
-
可以删除搜索记录
-
保存历史记录,保存10条,多余的则删除最久的历史记录
用户的搜索记录,需要给每一个用户都保存一份,数据量较大,要求加载速度快,通常这样的数据存储到mongodb更合适,不建议直接存储到关系型数据库中
1.MongoDB安装及集成
拉取镜像
docker pull mongo
创建容器
docker run -d --name mongo-service --restart=always -p 27017:27017 -v ~/data/mongodata:/data mongo
2.保存搜索记录
用户输入关键字进行搜索的异步记录关键字
3.用户搜索记录对应的集合,对应实体类:
package com.heima.search.pojos;
import lombok.Data;
import org.springframework.data.mongodb.core.mapping.Document;
import java.io.Serializable;
import java.util.Date;
/**
* <p>
* APP用户搜索信息表
* </p>
* @author itheima
*/
@Data
@Document("ap_user_search")
public class ApUserSearch implements Serializable {
private static final long serialVersionUID = 1L;
/**
* 主键
*/
private String id;
/**
* 用户ID
*/
private Integer userId;
/**
* 搜索词
*/
private String keyword;
/**
* 创建时间
*/
private Date createdTime;
}
ApAssociateWords
package com.heima.search.pojos;
import lombok.Data;
import org.springframework.data.mongodb.core.mapping.Document;
import java.io.Serializable;
import java.util.Date;
/**
* <p>
* 联想词表
* </p>
*
* @author itheima
*/
@Data
@Document("ap_associate_words")
public class ApAssociateWords implements Serializable {
private static final long serialVersionUID = 1L;
private String id;
/**
* 联想词
*/
private String associateWords;
/**
* 创建时间
*/
private Date createdTime;
}
4.实现步骤
4.1:pom依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>
4.2:nacos配置
spring:
data:
mongodb:
host: 192.168.200.130
port: 27017
database: leadnews-history
4.3.创建ApUserSearchService新增insert方法
public interface ApUserSearchService {
/**
* 保存用户搜索历史记录
* @param keyword
* @param userId
*/
public void insert(String keyword,Integer userId);
}
实现类:
@Service
@Slf4j
public class ApUserSearchServiceImpl implements ApUserSearchService {
@Autowired
private MongoTemplate mongoTemplate;
/**
* 保存用户搜索历史记录
* @param keyword
* @param userId
*/
@Override
@Async
public void insert(String keyword, Integer userId) {
//1.查询当前用户的搜索关键词
Query query = Query.query(Criteria.where("userId").is(userId).and("keyword").is(keyword));
ApUserSearch apUserSearch = mongoTemplate.findOne(query, ApUserSearch.class);
//2.存在 更新创建时间
if(apUserSearch != null){
apUserSearch.setCreatedTime(new Date());
mongoTemplate.save(apUserSearch);
return;
}
//3.不存在,判断当前历史记录总数量是否超过10
apUserSearch = new ApUserSearch();
apUserSearch.setUserId(userId);
apUserSearch.setKeyword(keyword);
apUserSearch.setCreatedTime(new Date());
Query query1 = Query.query(Criteria.where("userId").is(userId));
query1.with(Sort.by(Sort.Direction.DESC,"createdTime"));
List<ApUserSearch> apUserSearchList = mongoTemplate.find(query1, ApUserSearch.class);
if(apUserSearchList == null || apUserSearchList.size() < 10){
mongoTemplate.save(apUserSearch);
}else {
ApUserSearch lastUserSearch = apUserSearchList.get(apUserSearchList.size() - 1);
mongoTemplate.findAndReplace(Query.query(Criteria.where("id").is(lastUserSearch.getId())),apUserSearch);
}
}
}
4.4参考自媒体相关微服务,在搜索微服务中获取当前登录的用户
通过在app-gateway中获取用户id,存入header中,然后在search的拦截器中获取userId,存入AppThreadLocalUtil工具类中
4.5.在ArticleSearchService的search方法中调用保存历史记录
@Override
public ResponseResult search(UserSearchDto dto) throws IOException {
//1.检查参数
if(dto == null || StringUtils.isBlank(dto.getSearchWords())){
return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
}
ApUser user = AppThreadLocalUtil.getUser();
//异步调用 保存搜索记录
if(user != null && dto.getFromIndex() == 0){
apUserSearchService.insert(dto.getSearchWords(), user.getId());
}
//2.设置查询条件
SearchRequest searchRequest = new SearchRequest("app_info_article");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
//布尔查询
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
//关键字的分词之后查询
4.6.保存历史记录中开启异步调用,添加注解@Async
4.7在搜索微服务引导类上开启异步调用
4.8测试,搜索后查看结果
六.查询用户搜素记录
要求:当点击搜索框时,获取用户的搜索记录:
说明 | |
---|---|
接口路径 | /api/v1/history/load |
请求方式 | POST |
参数 | 无 |
响应结果 | ResponseResult |
在ApUserSearchService中新增方法
/**
查询搜索历史
@return
*/
ResponseResult findUserSearch();
实现方法
/**
* 查询搜索历史
*
* @return
*/
@Override
public ResponseResult findUserSearch() {
//获取当前用户
ApUser user = AppThreadLocalUtil.getUser();
if(user == null){
return ResponseResult.errorResult(AppHttpCodeEnum.NEED_LOGIN);
}
//根据用户查询数据,按照时间倒序
List<ApUserSearch> apUserSearches = mongoTemplate.find(Query.query(Criteria.where("userId").is(user.getId())).with(Sort.by(Sort.Direction.DESC, "createdTime")), ApUserSearch.class);
return ResponseResult.okResult(apUserSearches);
}
控制器
/**
* <p>
* APP用户搜索信息表 前端控制器
* </p>
* @author itheima
*/
@Slf4j
@RestController
@RequestMapping("/api/v1/history")
public class ApUserSearchController{
@Autowired
private ApUserSearchService apUserSearchService;
@PostMapping("/load")
public ResponseResult findUserSearch() {
return apUserSearchService.findUserSearch();
}
}
七.删除用户搜索记录
说明 | |
---|---|
接口路径 | /api/v1/history/del |
请求方式 | POST |
参数 | HistorySearchDto |
响应结果 | ResponseResult |
HistorySearchDto
@Data
public class HistorySearchDto {
/**
* 接收搜索历史记录id
*/
String id;
}
在ApUserSearchService中新增方法
/**
删除搜索历史
@param historySearchDto
@return
*/
ResponseResult delUserSearch(HistorySearchDto historySearchDto);
实现方法
/**
* 删除历史记录
*
* @param dto
* @return
*/
@Override
public ResponseResult delUserSearch(HistorySearchDto dto) {
//1.检查参数
if(dto.getId() == null){
return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
}
//2.判断是否登录
ApUser user = AppThreadLocalUtil.getUser();
if(user == null){
return ResponseResult.errorResult(AppHttpCodeEnum.NEED_LOGIN);
}
//3.删除
mongoTemplate.remove(Query.query(Criteria.where("userId").is(user.getId()).and("id").is(dto.getId())),ApUserSearch.class);
return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);
}
修改ApUserSearchController,补全方法
@PostMapping("/del")
public ResponseResult delUserSearch(@RequestBody HistorySearchDto historySearchDto) {
return apUserSearchService.delUserSearch(historySearchDto);
}
打开app可以删除搜索记录
八.联想词搜索
-
根据用户输入的关键字展示联想词
搜索词-数据来源
通常是网上搜索频率比较高的一些词,通常在企业中有两部分来源:
第一:自己维护搜索词
通过分析用户搜索频率较高的词,按照排名作为搜索词
第二:第三方获取
关键词规划师(百度)、5118、爱站网
功能实现
说明 | |
---|---|
接口路径 | /api/v1/associate/search |
请求方式 | POST |
参数 | UserSearchDto |
响应结果 | ResponseResult |
新建接口
package com.heima.search.controller.v1;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.search.dtos.UserSearchDto;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
@RequestMapping("/api/v1/associate")
public class ApAssociateWordsController {
@PostMapping("/search")
public ResponseResult search(@RequestBody UserSearchDto userSearchDto) {
return null;
}
}
新建联想词业务层接口
package com.heima.search.service;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.search.dtos.UserSearchDto;
/**
* <p>
* 联想词表 服务类
* </p>
*
* @author itheima
*/
public interface ApAssociateWordsService {
/**
联想词
@param userSearchDto
@return
*/
ResponseResult findAssociate(UserSearchDto userSearchDto);
}
实现类
package com.heima.search.service.impl;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.common.enums.AppHttpCodeEnum;
import com.heima.model.search.dtos.UserSearchDto;
import com.heima.search.pojos.ApAssociateWords;
import com.heima.search.service.ApAssociateWordsService;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.query.Criteria;
import org.springframework.data.mongodb.core.query.Query;
import org.springframework.stereotype.Service;
import java.util.List;
/**
* @Description:
* @Version: V1.0
*/
@Service
public class ApAssociateWordsServiceImpl implements ApAssociateWordsService {
@Autowired
MongoTemplate mongoTemplate;
/**
* 联想词
* @param userSearchDto
* @return
*/
@Override
public ResponseResult findAssociate(UserSearchDto userSearchDto) {
//1 参数检查
if(userSearchDto == null || StringUtils.isBlank(userSearchDto.getSearchWords())){
return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
}
//分页检查
if (userSearchDto.getPageSize() > 20) {
userSearchDto.setPageSize(20);
}
//3 执行查询 模糊查询
Query query = Query.query(Criteria.where("associateWords").regex(".*?\\" + userSearchDto.getSearchWords() + ".*"));
query.limit(userSearchDto.getPageSize());
List<ApAssociateWords> wordsList = mongoTemplate.find(query, ApAssociateWords.class);
return ResponseResult.okResult(wordsList);
}
}
新建联想词控制器
package com.heima.search.controller.v1;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.search.dtos.UserSearchDto;
import com.heima.search.service.ApAssociateWordsService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
/**
* <p>
* 联想词表 前端控制器
* </p>
* @author itheima
*/
@Slf4j
@RestController
@RequestMapping("/api/v1/associate")
public class ApAssociateWordsController{
@Autowired
private ApAssociateWordsService apAssociateWordsService;
@PostMapping("/search")
public ResponseResult findAssociate(@RequestBody UserSearchDto userSearchDto) {
return apAssociateWordsService.findAssociate(userSearchDto);
}
}