链接未来:深入理解链表数据结构(一.c语言实现无头单向非循环链表)

在上一篇文章中,我们探索了顺序表这一基础的数据结构,它提供了一种有序存储数据的方法,使得数据的访 问和操作变得更加高效。想要进一步了解,大家可以移步于上一篇文章:探索顺序表:数据结构中的秩序之美

今天,我们将进一步深入,探讨另一个重要的数据结构——链表

链表和顺序表一样,都属于线性表,也用于存储数据,但其内部结构和操作方式有着明显的不同。通过C语言的具体实现,我们将会更加直观地理解它

源码可以打我的gitee里面查找:唔姆/比特学习过程2 (gitee.com)


文章目录

    • @[toc]
  • 一.链表的概念及结构
  • 二.链表的分类
  • 三.无头单向非循环链表的实现
    • 1.项目文件规划
    • 2.基本结构及功能一览
    • 3.各功能接口具体实现
      • 3.1打印单链表
      • 3.2尾插
      • 3.3头插
      • 3.4尾删
      • 3.5头删
      • 3.6查找
      • 3.7插入pos前一个
      • 3.8删除pos前一个
      • 3.9插入pos后一个
      • 3.10删除pos后一个
      • 3.11销毁(避免内存泄露)

一.链表的概念及结构

请添加图片描述

链表是一种物理存储(实际上)结构上==非连续、非顺序==(杂乱随意排序)的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的

实际情况中:

请添加图片描述

从上图可发现:

  1. 链表在逻辑上连续,在物理上是不连续的
  2. 各个节点(Node)一般都是从上面申请空间的
  3. 从堆上面申请的空间是有一定策略的,可能连续,可也能不连续

二.链表的分类

  • 单向或者双向

请添加图片描述

  • 带头或者不带头

请添加图片描述

  • 循环或者非循环

请添加图片描述

三种情况随意组合起来就有8种链表结构

其中,最为常用的是:

无头单向非循环带头双向循环

请添加图片描述

无头单向非循环链表:结构简单,但是一般不会单独用来存数据。实际中更多是作为其他数据结构的子结构,如哈希桶、图的邻接表等等

请添加图片描述

带头双向循环链表:结构最复杂,一般用在单独存储数。实际中使用的链表数据结构,都是带头双向循环链表。这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多优势,实现它反而简单了

这两种结果都会给大家实现的,今天先来无头单向非循环链表


三.无头单向非循环链表的实现

1.项目文件规划

请添加图片描述

  • 头文件SList.h:用来基础准备(常量定义,typedef),链表表的基本框架,函数的声明
  • 源文件SList.h:用来各种功能函数的具体实现
  • 源文件test.c:用来测试功能是否有问题,进行基本功能的使用

2.基本结构及功能一览

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>

typedef int SLDataType;

typedef struct SingleListNode
{
	int data;
	SingleListNode* next;
}SLNode;

void SLPrint(SLNode* phead);// 单链表打印

void SLPushBack(SLNode** pphead, int n);// 单链表尾插
void SLPushFront(SLNode** pphead, int n);// 单链表头插
void SLPopBack(SLNode** pphead);// 单链表尾删
void SLPopFront(SLNode** pphead);// 单链表尾删

SLNode* SLFind(SLNode* phead, int n);
SLNode* SLInsert(SLNode** pphead, SLNode* pos, int n);//在pos前面插入
SLNode* SLErase(SLNode** pphead, SLNode* pos);//删除pos前面那个

void SLInsertAfter(SLNode* pos, int n);//在pos后面插入
void SLEraseAfter(SLNode* pos);//在pos后面删除

void SLDestory(SLNode** pphead);

3.各功能接口具体实现

3.1打印单链表

void SLPrint(SLNode* phead)
{
	assert(phead);
	SLNode* cur = phead;
	while (cur != NULL)//与while(cur)同样的效果
	{
		printf("%d ", cur->data);
		cur = cur->next;
	}
	printf("\n");
}

3.2尾插

SLNode* CreateNode(int n)
{
	SLNode* newNode= (SLNode*)malloc(sizeof(SLNode));
	if (newNode == NULL)
	{
		perror("malloc error");
		return -1;
	}
	newNode->data = n;
	newNode->next = NULL;
	return newNode;
}

void SLPushBack(SLNode** pphead, int n)
{
	assert(pphead);

	SLNode* newNode = CreateNode(n);//先把节点搞好
	//先考虑一下没有节点的情况
	if (*pphead == NULL)
	{
		*pphead = newNode;  //这就是传二级指针的原因:
		                   //我们要改变 SLNode* phead本身的指向,就把他地址传过来
		                  //当我们只是要改变指向的结构体里的内容时只要传SLNode* phead就行了
	}
	else
	{
		SLNode* tail = *pphead;
		while (tail->next != NULL)//找到最后一个节点
		{
			tail = tail->next;
		}
		tail->next = newNode;
	}
}
  1. 通过 CreateNode 函数创建了一个含有数值 n 的新节点 newNode
  2. 然后根据链表是否为空进行不同的操作:
  • 如果链表为空(即头指针指向空),则将新节点 newNode 赋值给头指针 *pphead
  • 如果链表不为空,则需要找到链表末尾的节点,通过遍历找到最后一个节点(tail),并将其 next 指针指向新节点 newNode,以将新节点插入到链表的末尾

为什么传入二级指针:

这种设计方式的原因在于需要修改指针本身的值,而不是只修改指针所指向的内容

考虑到单链表在插入节点时,可能会涉及链表头指针的修改,如果直接传递单级指针(指向头指针),在函数内部对头指针进行修改是不会反映到函数外部的==(形参是实参的临时拷贝)==。但如果使用二级指针,可以在函数内部修改指针的指向,这样修改后的指向会在函数外部保持

请添加图片描述

3.3头插

void SLPushFront(SLNode** pphead, int n)
{
	assert(pphead);

	SLNode* newNode = CreateNode(n);//先把节点搞好
	if (*pphead == NULL)
	{
		*pphead = newNode;
	}
	else
	{
		newNode->next = (*pphead)->next;
		(*pphead)->next = newNode;
	}
	//或者
	//newNode->next = (*pphead);
	//*pphead = newNode;
}
  1. 通过 CreateNode 函数创建了一个含有数值 n 的新节点 newNode
  2. 接着,根据链表是否为空进行不同的操作:
    • 如果链表为空(即头指针指向空),则将新节点 newNode 赋值给头指针 *pphead
    • 如果链表不为空,则将新节点 newNodenext 指针指向当前头节点的下一个节点(原链表的第二个节点),然后将当前头节点的 next 指针指向新节点 newNode,以完成插入

注释部分显示了另一种写法,通过先设置新节点的 next 指针指向当前头节点,然后再将链表的头指针指向新节点,实现了同样的插入操作

请添加图片描述

3.4尾删

void SLPopBack(SLNode** pphead)
{
	assert(pphead);
	assert(*pphead);//防止一个都没有还删
	if ((*pphead)->next == NULL)//只有一个
	{
		free(*pphead);
		*pphead = NULL;
	}
	else
	{
		//找到倒数第二个
		SLNode* pre_tail = *pphead;
		while (pre_tail->next->next != NULL)
		{
			pre_tail = pre_tail->next;
		}
		free(pre_tail->next);
		pre_tail->next = NULL;
	}
}
  1. 检查链表头指针 *pphead 是否存在(不为 NULL),以及链表是否为空(只有一个节点)
    • 如果链表中只有一个节点,则直接释放该节点,并将链表头指针设置为 NULL,表示链表为空
    • 如果链表中有多个节点,则会找到倒数第二个节点,即指向最后一个节点的前一个节点。它通过遍历链表直到找到倒数第二个节点 pre_tail,然后释放最后一个节点,并将倒数第二个节点的 next 指针设置为 NULL,表示该节点成为新的末尾节点

3.5头删

void SLPopFront(SLNode** pphead)
{
	assert(pphead);
	assert(*pphead);//防止一个都没有还删

	SLNode* first = (*pphead)->next;//一个和多个都适用
	free(*pphead);
	*pphead = first;
}
  1. 创建了一个临时指针 first 来指向原链表的第二个节点(如果存在)。这是因为要删除的是链表的头节点,为了不断开链表,需要先保存第二个节点的地址
  2. 通过 free(*pphead) 释放掉原来的头节点,然后将链表的头指针 *pphead 更新为原头节点的下一个节点 first

3.6查找

SLNode* SLFind(SLNode* phead, int n)
{
	assert(phead);
	SLNode* cur = phead;
	while (cur != NULL)//与while(cur)同样的效果
	{
		if (cur->data == n)
		{
			return cur;
		}
		cur = cur->next;
	}
	return NULL;
}

3.7插入pos前一个

void SLInsert(SLNode** pphead, SLNode* pos, int n)//在pos前面插入
{
	assert(pphead);
	assert(pos);
	SLNode* cur = *pphead;
	if (*pphead == pos)//在第一个节点前面插入
	{
		// 头插
		SLTPushFront(pphead, n);
	}
	else
	{
		while (cur->next != pos)
		{
			cur = cur->next;
		}
		SLNode* newNode = CreateNode(n);
		newNode->next = cur->next;
		cur->next = newNode;
	}
}
  • 如果要插入的位置 pos 就是链表的头节点 *pphead,即在第一个节点前面插入,则调用 SLTPushFront 函数,直接在链表头部插入新节点 newNode
  • 如果要插入的位置不是头节点,则通过循环遍历链表,直到找到 pos前一个节点 cur,然后创建新节点 newNode 并将其插入到 pos 前面,完成节点的插入操作

3.8删除pos前一个

void SLErase(SLNode** pphead, SLNode* pos)
{
	assert(pphead);
	assert(pos);
	assert(*pphead != pos);//防止前面没有
	SLNode* cur = *pphead;
	SLNode* pre_cur = *pphead;
	while (cur->next != pos)
	{
		pre_cur = cur;
		cur = cur->next;
	}
	pre_cur->next = pos;
	free(cur);
	cur = NULL;
}

3.9插入pos后一个

void SLInsertAfter(SLNode* pos, int n)
{
	assert(pos);
	SLNode* newNode =CreateNode(n);
	newNode->next = pos->next;
	pos->next = newNode;
}
  1. 创建一个新节点 newNode,并将新节点的 next 指针指向 pos 节点原本的下一个节点,以保证链表的连续性
  2. pos 节点的 next 指针指向新节点 newNode,完成了在指定节点之后插入新节点的操作

3.10删除pos后一个

void SLEraseAfter(SLNode* pos)
{
	assert(pos);
	SLNode* next = pos->next->next;
	free(pos->next);
	pos->next = NULL;
	pos->next = next;
}

3.11销毁(避免内存泄露)

void SLDestory(SLNode** pphead)
{
	assert(pphead);
	SLNode* cur = *pphead;
	SLNode* next = *pphead;
	while (cur!=NULL)
	{
		next = cur->next;
		free(cur);
		cur = next;
	}
	*pphead = NULL;
}

循环删除每一个Node,最后把原本的结构体指针指向NULL


好啦,这次知识就先到这里啦!下一次大概率是双向带头循环的代码实现了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/261064.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

springboot整合kafka附源码

前提&#xff1a;确保kafka环境 我使用的方案是docker 我使用的镜像为&#xff1a;wurstmeister/kafka 我使用的镜像为&#xff1a;wurstmeister/zookeeper docker安装kafka和zk教程&#xff1a;点这里手把手教你使用Docker搭建kafka【详细教程】 使用kafka前&#xff0c;要确…

字符串函数内存函数(从零到一)【C语言】

长度不受限制的字符串函数&#xff1a;strcpy,strcat,strcmp 长度受限制的字符串函数&#xff1a;strncpy,strncat,strncmp strlen strlen函数是库函数中我们最常使用的函数&#xff0c;它可以求出字符串的长度(不包含‘\0’) 使用方法 通过前面对strlen函数的模拟实现我们知…

考研小白助力宝典(2)

前言 考研&#xff0c;是一场耗时长久的脑力之战&#xff0c;刻苦勤奋的态度和披荆斩棘的精神外&#xff0c;往往取决于谁抓好了信息利剑&#xff01;合理得当利用好信息平台&#xff0c;就已经快人一步战胜了大部分的竞争对手了&#xff01; 目录 着重学习练习 考研相关简介 …

小白向攻略简单易懂,怎么用DomoAI将手机里面的视频转换成丝滑流畅高帧数的动画

Domo AI是一款强大的人工智能工具&#xff0c;支持图像和视频的重新创作。它拥有超过10个多样化的预设模型&#xff0c;使用户能够轻松实现一致且统一的艺术风格。 在图像生成方面&#xff0c;Domo AI能够快速将照片转换成动漫或现实风格&#xff0c;同时还支持将素描或线稿重…

关于“Python”的核心知识点整理大全33

目录 12.8.3 将子弹存储到编组中 alien_invasion.py 注意 12.8.4 开火 game_functions.py 12.8.5 删除已消失的子弹 alien_invasion.py 12.8.6 限制子弹数量 settings.py game_functions.py 12.8.7 创建函数 update_bullets() game_functions.py alien_invasion.py…

redhawk中short引起的ir drop为0的情况

我正在「拾陆楼」和朋友们讨论有趣的话题&#xff0c;你⼀起来吧&#xff1f; 拾陆楼知识星球入口 问题如图&#xff0c;顶层在做redhawk分析时读了top及block的def&#xff0c;但top def中并没有把block pg pin写到top 的pg net下&#xff0c;导致redhawk认为有short存在&…

获投1050万欧元!德国量子公司Kipu Quantum成功研发特定压缩算法

​&#xff08;图片来源&#xff1a;网络&#xff09; 近日&#xff0c;德国量子软件公司Kipu Quantum宣布成功完成种子轮融资&#xff0c;融资总额达1050万欧元&#xff08;约合8000万人民币&#xff09;。该初创公司目前已开发出运行高性能量子计算机所需的压缩算法。该算法…

迎接新技术挑战,JFrog发布与升级系列黑科技技术产品

作为开发者&#xff0c;我们十分关注软件开发的全生命周期&#xff0c;有一家企业也同样关注软件交付和流式软件&#xff0c;致力创造从开发人员到设备之间畅通无阻的软件交付世界。它便是 JFrog&#xff0c;自2008年成立以来&#xff0c;目前已在全球范围内拥有7200家客户&…

2024年天津理工大学中环信息学院专升本报名考务费网上缴费说明

2024年天津理工大学中环信息学院高职升本考试报名考务费网上缴费说明 通过资格审核的考生&#xff0c;须在2023年12月22日至12月25日每天8:00-17:00完成考务费缴费&#xff0c;网上缴费参照津发改价费【2020】371号文件&#xff0c;左右考试考务费&#xff1a;80元&#xff08…

Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580

Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建漏洞利用 修复建议总结 Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580 已亲自复现) 漏洞名称 漏洞描述 Apache ShenYu是一个异步的&#xff0c;高性能的&#x…

如何在 FastAPI 中设置定时任务:完全指南

Web 应用程序开发中&#xff0c;及时高效处理常规任务至关重要&#xff0c;包括定时收集数据或管理任务计划。针对强大且性能卓越的 FastAPI 框架&#xff0c;我们可以通过几种策略来管理这些必要的定时任务。 实现 FastAPI 中的定时任务 本指南将探讨在 FastAPI 环境中管理定…

Git初始

一)git的介绍: 1)假设现在有一个文档&#xff0c;你的老板要求你针对于这份文件进行修改&#xff0c;进行完成的修改的版本是版本1&#xff0c;接下来是文档2&#xff0c;修改完文档2以后&#xff0c;接下来老板还不同意&#xff0c;于是又有了文档三&#xff0c;文档四&#x…

Ubuntu 常用命令之 less 命令用法介绍

&#x1f4d1;Linux/Ubuntu 常用命令归类整理 less命令是一个在Unix和Unix-like系统中用于查看文件内容的命令行工具。与more命令相比&#xff0c;less命令提供了更多的功能和灵活性&#xff0c;例如向前和向后滚动查看文件&#xff0c;搜索文本&#xff0c;查看长行等。 les…

算法和算法分析

一个问题抽象为一个抽象数据类型后&#xff0c;仅是形式上的抽象定义&#xff0c;还没有达到问题解决的目的&#xff0c;要实现这个目标&#xff0c;就要吧抽象的变成具体的&#xff0c;即抽象数据类型再计算机上实现&#xff0c;变为一个能用的具体的数据类型&#xff01; …

Unity | Shader基础知识(第八集:案例<漫反射材质球>)

目录 一、本节介绍 1 上集回顾 2 本节介绍 二、什么是漫反射材质球 三、 漫反射进化史 1 三种算法结果的区别 2 具体算法 2.1 兰伯特逐顶点算法 a.本小节使用的unity自带结构体。 b.兰伯特逐顶点算法公式 c.代码实现——兰伯特逐顶点算法 2.2 代码实现——兰伯特逐…

如何开启In-sensor zoom 功能

和你一起终身学习&#xff0c;这里是程序员Android 经典好文推荐&#xff0c;通过阅读本文&#xff0c;您将收获以下知识点: 一、In-sensor zoom 概述二、如何开启 In-sensor zoom2.1 开启 camxsettings.xml setting2.2 多摄像头&#xff0c;需要添加特殊的逻辑2.3 在 MetaTran…

记录下IAP升级将APP程序修改正常模式下载失败 No Algorithm found for: 08000000H - 08008FFFH

移植发现问题&#xff1a; No Algorithm found for: 08000000H - 08008FFFH 今天在调试程序时&#xff0c;需要把钱同事程序的APP修改成成正常下载就可以用的程序&#xff0c;工程的地址复位也把APP的偏移地址去掉&#xff0c;理论上这样就OK了 偏移地址设置也屏蔽了 STLINK下…

美摄AE模板插件工具,将美摄SDK和AE极致融合

视频内容已经成为企业宣传和品牌建设的重要手段&#xff0c;为了满足企业对于高质量视频制作的需求&#xff0c;美摄科技推出了一款创新性的插件工具——美摄AE模板插件工具。这款工具将美摄SDK能力和Adobe After Effects极致融合&#xff0c;为企业提供了一种快速制作和转化美…

vue 历程记

目录 前言一、源码优化1、vue3.x 采用 monorep 的理念来管理源码2、vue3.x 源码采用 TypeScript 开发 二、性能优化1、减少源码的体积2、数据劫持优化3、编译优化&#xff08;1&#xff09;、编译粒度的优化 三、语法 API 的优化1、优化了编码的逻辑组织2、优化了代码的逻辑复用…

Java学习系列(四)

1.Scanner类 java.util.Scanner 是 Java5 的新特征&#xff0c;我们可以通过 Scanner 类来获取用户的输入。 import java.util.Scanner; public class ScannerDemo {public static void main(String[] args) {Scanner scan new Scanner(System.in);// 从键盘接收数据// next…