利用Spark构建房价分析与推荐系统:基于58同城数据的大数据实践

利用Spark构建房价分析与推荐系统:基于58同城数据的大数据实践

  • 基于Spark的房价数据分析预测推荐系统
    • 引言
    • 技术栈
    • 功能概述
    • 项目实现
      • 1. 数据爬取与处理
      • 2. 大数据分析与可视化
      • 3. 房价预测模型
      • 4. 协同过滤推荐系统
      • 5. Web应用开发
      • 6. 数据管理与用户管理
    • 总结与展望

基于Spark的房价数据分析预测推荐系统

引言

近年来,大数据技术在各个领域的应用愈发广泛,房地产领域也不例外。本文将介绍如何利用Pandas、Spark、Echarts和Flask等技术构建一个全面的房价数据分析、预测和推荐系统。数据集来自58同城的爬取,我们将通过数据爬取、处理、可视化以及机器学习等环节,打造一个功能完备的系统。
在这里插入图片描述

技术栈

  • Pandas: 用于数据处理和初步清洗。
  • Spark: 处理大规模数据,加速数据分析过程。
  • Echarts: 创建交互式数据可视化图表,直观展示房价分布和趋势。
  • Flask: 构建Web应用,展示数据可视化、房价预测和推荐结果。
  • 协同过滤推荐: 利用协同过滤算法为用户推荐适合的房屋。

功能概述

  1. 数据爬取: 利用58同城爬虫获取实时房价数据。
  2. 数据处理: 使用Pandas进行数据清洗、处理,确保数据质量。
  3. 数据可视化: 利用Spark加速大数据分析,使用Echarts创建交互式可视化图表展示房价相关信息。
  4. 房价预测: 基于Spark构建房价预测模型,通过机器学习算法实现对未来房价的预测。
  5. 房屋推荐: 实现协同过滤推荐系统,为用户提供个性化的房屋推荐。
  6. 数据管理: 设计合适的数据库结构,确保系统数据的可扩展性和一致性。
  7. 用户管理: 实现用户系统,保障数据安全性和隐私保护。
    在这里插入图片描述

项目实现

1. 数据爬取与处理

我们通过58同城的爬虫获取实时房价数据,然后利用Pandas进行数据清洗和初步处理,以确保数据的准确性和完整性。

# 示例代码
import pandas as pd

# 爬取数据
data = crawl_data_from_58()

# 使用Pandas进行数据处理
cleaned_data = preprocess_data_with_pandas(data)

2. 大数据分析与可视化

利用Spark处理大规模数据,加速数据分析过程,并使用Echarts创建交互式可视化图表,直观展示房价的分布和趋势。

# 示例代码
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("house_price_analysis").getOrCreate()

# 使用Spark进行数据分析
analyzed_data = spark_analyze_data(cleaned_data)

# 使用Echarts创建可视化图表
create_echarts_visualization(analyzed_data)

3. 房价预测模型

基于Spark构建房价预测模型,通过机器学习算法实现对未来房价的预测。

# 示例代码
from pyspark.ml import Pipeline
from pyspark.ml.regression import RandomForestRegressor

# 构建机器学习模型
model = RandomForestRegressor(featuresCol="features", labelCol="label")
pipeline = Pipeline(stages=[feature_assembler, model])
trained_model = pipeline.fit(training_data)

# 预测未来房价
predictions = trained_model.transform(test_data)

4. 协同过滤推荐系统

实现协同过滤推荐系统,为用户提供个性化的房屋推荐。

# 示例代码
from surprise import Dataset, Reader
from surprise.model_selection import train_test_split
from surprise import KNNBasic

# 构建协同过滤模型
reader = Reader(rating_scale=(min_rating, max_rating))
data = Dataset.load_from_df(ratings_df, reader)
trainset, testset = train_test_split(data, test_size=0.2)
sim_options = {'name': 'cosine', 'user_based': False}
model = KNNBasic(sim_options=sim_options)
model.fit(trainset)

# 为用户生成推荐
user_recommendations = generate_user_recommendations(user_id)

5. Web应用开发

使用Flask构建房价数据分析与推荐系统的Web应用,展示数据可视化、房价预测和推荐结果。

# 示例代码
from flask import Flask, render_template, request

app = Flask(__name__)

@app.route("/")
def index():
    # 在此处渲染主页
    return render_template("index.html")

@app.route("/predict", methods=["POST"])
def predict():
    # 处理用户输入,进行房价预测
    user_input = request.form.get("user_input")
    prediction = make_prediction(user_input)
    
    # 在此处渲染预测结果页面
    return render_template("prediction_result.html", prediction=prediction)

6. 数据管理与用户管理

设计合适的数据库结构,确保系统数据的可扩展性和一致性。同时,实现用户系统,保障数据安全性和隐私保护。

# 示例代码
# 数据库设计和用户管理系统的实现
# ...

总结与展望

通过本文的介绍,我们构建了一个基于Spark的房价数据分析预测推荐系统,实现了数据爬取、处理、可视化、房价预测、房屋推荐、数据管理和用户管理等多个功能。未来,我们可以进一步优化算法、提升系统性能,并扩展到更多的数据源,使系统更为强大和全面。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/260575.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

常见的Web攻击手段分析总结,实战案例:通过 X-Forwarded-Host 的密码重置令牌泄漏

常见的Web攻击手段分析总结,实战案例:通过 X-Forwarded-Host 的密码重置令牌泄漏。 常见的 Web 攻击手段主要有 XSS 攻击、CSRF 攻击、SQL 注入攻击、DDos 攻击、文件漏洞攻击等。这几种攻击方式的防护手段并不复杂,却还是有很多企业遭受了该攻击,朔源到头,还是因为人为的…

【实时绘画】krita + comfyUI 实时绘画 儿童海报

1:打开comfyUI 2: 打开krita 打开 cd custom_nodes 输入命令 安装控件 git clone https://github.com/Acly/comfyui-tooling-nodes.git

Gamma分布

分布的概率密度为: 其中参数 分布的数学期望等于,方差等于。

java:用ClassLoader将文件转化为输入流

代码示例: package com.thb;import java.io.IOException; import java.io.InputStream;public class Demo4 {public static void main(String[] args) throws IOException {String resource "com/thb/test.properties";// 获得ClassLoaderClassLoader c…

大数据HCIE成神之路之数据预处理(3)——数值离散化

数值离散化 1.1 无监督连续变量的离散化 – 聚类划分1.1.1 实验任务1.1.1.1 实验背景1.1.1.2 实验目标1.1.1.3 实验数据解析 1.1.2 实验思路1.1.3 实验操作步骤1.1.4 结果验证 1.2 无监督连续变量的离散化 – 等宽划分1.2.1 实验任务1.2.1.1 实验背景1.2.1.2 实验目标1.2.1.3 实…

用户管理第2节课-idea 2023.2 后端--删除表,从零开始

一、鱼皮清空model文件夹下 二、鱼皮清空mapper文件夹下 三、删除 test 测试类下的部分代码 3.1删除SampleTest 3.2删除部分代码 UserCenterApplicationTests

自动化测试|Eolink Apikit 如何保存、使用测试用例

测试用例是测试过程中很重要的一类文档,它是测试工作的核心,是一组在测试时输入和输出的标准,是软件需求的具体对照。 测试用例可以帮助测试人员理清测试思路,确保测试覆盖率,发现需求漏洞,提高软件质量&a…

VC++ MinGW编译器将图片、字体等资源文件编译进程序和使用

Mingw使用附带的windres.exe可以将资源文件编译成.o文件, 之后与其他目标文件一起g++.exe链接生成程序 为了方便,使用mingw编译器版本的codeblock编写程序 用位图资源作为例子,新建一个空项目,在项目下新建一个资源文件,resource.rc,一个cpp文件main.cpp,一个头文件reso…

YOLOv8轻量化模型:模型轻量化创新 | MobileNetV3结合轻量级MLCA模块

💡💡💡本文解决什么问题:MobileNetV3结合轻量级的 Mixed Local Channel Attention (MLCA) 模块,实现轻量化 1.MLCA原理介绍 论文:https://www.sciencedirect.com/science/article/abs/pii/S0952197623006267 摘要:本项目介绍了一种轻量级的 Mixed Local Channel At…

IDEA版SSM入门到实战(Maven+MyBatis+Spring+SpringMVC) -SpringMVC搭建框架

第一章 初识SpringMVC 1.1 SpringMVC概述 SpringMVC是Spring子框架 SpringMVC是Spring 为**【展现层|表示层|表述层|控制层】**提供的基于 MVC 设计理念的优秀的 Web 框架,是目前最主流的MVC 框架。 SpringMVC是非侵入式:可以使用注解让普通java对象&…

2万字揭秘阿里巴巴数据治理平台建设经验(上),附推荐系统完整源码

原文链接 https://mp.weixin.qq.com/s?__bizMjM5MjA0OTYwNQ&mid2247484210&idx1&sn5ceffbba79553219b792e2fcfb9c6789&chksma6ad739891dafa8eeabcde82ed24f04d9ffbbb837137fe7c1c72b38c986b38aa83f0c593e02a&token909431872&langzh_CN#rd 本文从七个…

Qt之判断一个点是否在多边形内部(射线法)

算法思想: 以被测点Q为端点,向任意方向作射线(一般水平向右作射线),统计该射线与多边形的交点数。如果为奇数,Q在多边形内;如果为偶数,Q在多边形外。计数的时候会有一些特殊情况。这种方法适用于任意多边形,不需要考虑精度误差和多边形点给出的顺序,时间复杂度为O(n)…

C# NPOI导出datatable----Excel模板画图表

1、创建Excel模板 2、安装NPOI管理包 3、创建工作簿 (XLSX和XLS步骤一样,以XLS为例) IWorkbook workbook null; string time DateTime.Now.ToString("yyyyMMddHHmmss"); string excelTempPath Application.StartupPath "…

VScode安装C/C++编译器步骤

一、安装C/C插件 二、安装 MinGW-w64 工具链 使用国内源 git clone https://gitee.com/cuihongxi/ubuntu2-mac.git 下载后进入到VScode文件夹下,点击msys2-x86_64-20231026.exe进行安装 完成后,确保选中“立即运行 MSYS2”框,然后选择“完…

比特币和区块链并非游离在法律之外

​​发表时间:2023年12月01日 近年来,围绕区块链监管的讨论,已经成为政策制定者、行业领袖和区块链爱好者之间越来越重要的话题。随着各国政府在促进创新和确保消费者保护之间寻求着平衡,有关区块链监管的持续讨论反映出这项变革性…

ssm445基于SSM的学生宿舍管理系统论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本学生宿舍管理系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信息…

HDFS NFS Gateway(环境配置,超级详细!!)

HDFS NFS Gateway简介: ​ HDFS NFS Gateway是Hadoop Distributed File System(HDFS)中的一个组件,它允许客户端通过NFS(Network File System,网络文件系统)与HDFS进行交互。具体来说,HDFS NFS…

管理类联考——数学——真题篇——按知识分类——代数——数列

【等差数列 ⟹ \Longrightarrow ⟹ 通项公式: a n a 1 ( n − 1 ) d a m ( n − m ) d n d a 1 − d A n B a_n a_1(n-1)d a_m(n-m)dnda_1-dAnB an​a1​(n−1)dam​(n−m)dnda1​−dAnB ⟹ \Longrightarrow ⟹ A d , B a 1 − d Ad&#x…

【CSS @property】CSS自定义属性说明与demo

CSS property property - CSS: Cascading Style Sheets | MDN At 规则 - CSS:层叠样式表 | MDN Custom properties (–*): CSS variables - CSS: Cascading Style Sheets | MDN CSS Houdini - Developer guides | MDN 📚 什么是property? property CSS…

GitHub two-factor authentication开启教程

问题描述 最近登录GitHub个人页面动不动就有一个提示框”… two-factor authentication will be required for your account starting Jan 4, 2024 …“,点击去看了一下原来是GitHub对所有的用户登录都要开启双重身份认证,要在1月4号前完成 解决办法 …