原文链接
https://mp.weixin.qq.com/s?__biz=MjM5MjA0OTYwNQ==&mid=2247484210&idx=1&sn=5ceffbba79553219b792e2fcfb9c6789&chksm=a6ad739891dafa8eeabcde82ed24f04d9ffbbb837137fe7c1c72b38c986b38aa83f0c593e02a&token=909431872&lang=zh_CN#rd
本文从七个方面介绍阿里的数据治理平台建设经验,供参考:
1、数据生产规范性治理
2、数据生产稳定性治理
3、数据生产质量治理
4、数据应用提效治理
5、数据安全管控治理
6、数据成本治理
7、数据治理组织架构及文化建设
00前言
阿里巴巴一直将数据作为自己的核心资产与能力之一,通过多年的实践探索建设数据应用,支撑业务发展。在不断升级和重构的过程中,我们经历了从分散的数据分析到平台化能力整合,再到全局数据智能化的时代。如今,大数据平台面临全新的挑战,特别是降本等数据治理需求的不断出现,今天阿里云 DataWorks 团队将其中一些建设经验与大家进行一些分享。
01数据繁荣的红利与挑战
大数据平台的建设,到底可以为企业带来什么样的价值?
对于技术同学来说,往往会用一些技术指标来衡量,例如数据量,机器数量,任务数量等等。根据我们往年已经对外公开的数据,我们可以看到大数据计算引擎MaxCompute的单日数据处理量在不断增长,在2021年双11的时候,MaxCompute单日数据处理量已经达到了2.79EB。有趣的是,双11不仅仅意味着当年的波峰,同时也是来年的起点,成为了2022年日常每天的数据处理量,去年的峰值成为了来年的日常。在大数据开发治理平台DataWorks上,单日任务调度实例数也超过了1000万,其中也包含着业务之间50多种各类复杂的数据处理关系,保障数据正常、有序产出,如果将整个阿里巴巴集团的数据任务依赖全部展开,将会是一副非常广阔的数据画卷。
规模当然可以一定程度上反馈我们为业务带来的支持,特别像双11这种世界级的场景,对很多技术都是全新的挑战。但是从大数据平台到创造价值之间,还有一个很重要的环节是“人”,是大数据平台的用户。
对于DataWorks来说,作为大数据平台最贴近用户的工具层,可以看到DataWorks集团内的用户数正在以每年5位数的量级不断快速增长,当前每月在DataWorks上进行各类数据操作的活跃用户数超过5万人,除了数据工程师、算法、开发等技术人员在上面进行数据同步、开发、治理等工作,同时也服务运营小二、分析师、财务、HR等各类业务人员,进行个性化的找数、取数、用数等分析工作。所以,大数据平台不仅仅应该停留在数据团队,我们要有更多的用户进来,更多地走向业务团队,提升数据使用的效率,让平台、用户、业务达成正向循环,推动企业数据价值不断释放。
从最早的淘宝、天猫等电商业务,到后续的优酷、高德、菜鸟等板块,DataWorks与MaxCompute等产品用一套技术体系来支持不同业务的发展与创新。因此我们认为大数据平台的价值体现,不仅仅是数据量的增长,同时也是用户数的增长,数据应用(业务)的增长,人人参与数据建设,为企业带来整体的“数据繁荣”。
数据繁荣为我们带来了红利,同时也带动了各类数据治理需求的井喷。从2009年算起,我们做DataWorks已经15年了,对于一款发展了如此之久的产品,我们走过了阿里巴巴集团几乎所有外部知名的数据架构进化的时代,同时在当前也面临众多全新挑战。在大数据平台的建设过程中,我们经常遇到一些数据治理的问题,例如:
-
数据稳定性不足
任务调度随着规模增大经常挂掉,不稳定,集群计算资源不足;员工经常起夜处理告警,故障无法快速恢复;突发大流量导致数据服务宕机或不可用
-
数据应用效率低
表数量越来越多,找不到需要的数据;缺少数据规范与标准,每次使用都要沟通;数据需求经常变更,数仓人员压力巨大
-
数据管理风险大
数据使用人员多,管理与易用难以平衡;数据出口多,人为泄露行为管控难;法规不断更新,敏感数据发现难,数据分类分级难度高
-
数据成本压力大
降本成为大趋势,技术挑战大;不知道成本问题在哪,在哪个部门/人;数据不敢删、任务不敢下
不管是阿里巴巴集团内部,还是我们服务的众多阿里云上客户,和我们沟通的时候都希望聊聊数据治理相关的主题。他们面对众多数据治理需求,往往感觉无从下手,就像“按下葫芦浮起瓢”,每天都会冒出新的问题。我们其实没法一次性解决所有问题,但是可以逐步解决主要问题。基于DataWorks的建设经验,我们将企业的数据治理需求整理成四个大的阶段,每个阶段都有不同典型的数据治理问题,应该投入更多的精力来处理这个阶段的主要矛盾,并且从这些实践中,逐步形成企业数据治理各类方法论与规范的沉淀。
一、起步阶段-数据量与稳定性的矛盾
起步阶段我们最重要的是得保障“有”数据,数据不断产生,数据量不断增长,我们需要保证数据产出的时效性,稳定性、数据质量的准确性,这些也是数仓同学最常面对的问题类型之一。在这个时候遇到的数据治理问题主要集中在集群上,例如任务长时间等待,计算、存储、调度等各种资源不足,数据无法产出,或者产出脏数据,集群挂了,运维无法定位问题,问题处理时间长,补数据止血难度大,人肉运维无自动化等等。这个时候,业务将会明显感受波动,有些故障甚至会造成业务资损。
二、应用阶段-数据普惠与使用效率的矛盾
当我们“有”数据的时候,接下来面临的就是“用”数据,我们想要更多人来使用数据,实现数据普惠,但是用的人越多,需求也会越多,效率反而会受阻。我们的产品满足50人使用还是5万人使用,可以说是天差地别。这时遇到的更多数据治理需求主要集中在效率上,例如:各个部门人员找数、查数、用数需求不断增加,使用数据人员开始增多,数仓人员疲于取数;数据开始赋能业务,各类数据应用需求井喷,数据团队压力增大等等。这个时候,数仓建设可能逐步变得有点混乱,甚至有走向失控的节奏。
三、规模阶段-灵活便携与风险管控的矛盾
随着用数据的人越来越多,前台也会建设越来越多的数据应用,带来的各类数据风险就会增大,我们要开始“管数据”,但是各类数据安全的管理动作往往会和效率背道而驰。在这个阶段我们解决的数据治理主要问题主要集中在各类安全管控能力上,例如:各类法律法规直指内部各类数据安全风险;不知道谁在什么时候怎么使用数据,出现一些数据泄露事件。
四、成熟阶段-业务变化与成本治理的矛盾
成熟阶段意味着我们能实现数据业务化,但是面对当前的环境,经常会提出“降成本”的需求。
如果业务增长、成本线性增长,我们需要成本治理
如果业务受限,成本冗余大,我们也需要成本治理
那应该怎么降、降哪些,对于多企业也是一个难以回答的问题。而且对于一个成熟阶段来说,成本治理不应该是一个“运动式”“项目式”的工作,而应该将之前提到的各类公司数据治理的理念深入人心,形成常态化的工作。
可以看到,降本往往是在数字化建设偏后期的需求。很多人一来和我们聊数据治理就说降本,其实在我们看来,对于绝大部分企业来说,降本的需求本身并没有问题,后面我们也会重点讲解下,但不妨可以回顾下前面几个阶段,我们是否做的足够充分,例如当前的成本高企,或许是因为第一阶段堆叠了过多的人肉,又或许是因为第二阶段各种人员无序使用资源。。。。。
。。。。。。。。。。更多内容点击原文链接:
https://mp.weixin.qq.com/s?__biz=MjM5MjA0OTYwNQ==&mid=2247484210&idx=1&sn=5ceffbba79553219b792e2fcfb9c6789&chksm=a6ad739891dafa8eeabcde82ed24f04d9ffbbb837137fe7c1c72b38c986b38aa83f0c593e02a&token=909431872&lang=zh_CN#rd