基于ASF-YOLO融合空间特征和尺度特征的新型注意力尺度序列融合模型开发构建涵洞隧道场景下墙壁建筑缺陷分割检测系统

在ASF-YOLO提出之初,我们就进行了相应的实践开发,感兴趣的话可以自行移步阅读:

《基于ASF-YOLO融合空间特征和尺度特征的新型注意力尺度序列融合模型开发构建医学场景下细胞分割检测识别系统,以【BCC、DSB2018数据集为基准】》

本文的主要目的是想要基于ASF-YOLO开发构建在涵洞隧道场景下壁体类建筑的缺陷分割识别系统,首先看下实例效果:

相关涵洞隧道场景下的墙体缺陷分割实践感兴趣的话可以自行移步阅读:

《AI助力隧道等洞体类场景下水泥基建缺陷检测,基于DeeplabV3Plus开发构建洞体场景下壁体建筑缺陷分割系统》

《基于轻量级yolov5n开发构建涵洞场景下洞体墙体缺陷病害检测分割系统》

《基于轻量级YOLOv5s开发构建隧道基建裂痕、脱落等缺陷问题检测系统》

《基于yolov5全系列[n/s/m/l/x]不同参数量级模型开发构建隧道巡检场景下水泥建筑墙体缺陷病害检测分割系统》

《探索图像分辨率对于模型的影响,基于yolov5x开发构建桥洞、隧道、涵洞等水泥洞体建筑裂缝缺陷等检测识别系统》

《助力涵洞场景安全智能巡检,基于yolov7/yolov7x/yolov7e6e开发构建基体建筑缺陷问题检测识别系统》

ASF-YOLO框架结合了空间和尺度特征,实现了准确快速的细胞实例分割。基于YOLO分割框架,我们使用尺度序列特征融合(SSFF)模块来增强网络的多尺度信息提取能力,并使用三重特征编码器(TPE)模块来融合不同尺度的特征图以增加详细信息。我们进一步引入了一种通道和位置注意机制(CPAM)来集成SSFF和TPE模块,该模块专注于信息通道和空间位置相关的小对象,以提高检测和分割性能。在两个细胞数据集上的实验验证表明,所提出的ASFYOLO模型具有显著的分割精度和速度。在2018年数据科学碗数据集上,它实现了0.91的boxmAP、0.887的maskmAP和47.3 FPS的推理速度,优于最先进的方法。
官方论文在这里,如下所示:

YOLO框架一般由backbone、neck和head三个主要组件构成。backbone网络是卷积神经网络,用于从不同的粒度下提取图像特征。CSPDarknet53是基于YOLOv4进行改进的backbone网络,被用作YOLOv5的主干网络。它包含了C3模块(包括3个卷积层)和ConvBNSiLU模块。在YOLOv5和YOLOv8的backbone中,有5个级别的特征提取分支:P1、P2、P3、P4和P5,与YOLO网络的输出相关联。YOLOv5 v7和YOLOv8是基于YOLO的主流架构之一,不仅可以用于检测和分类任务,还可以处理分割任务。 

作者开发了一种新颖的特征融合网络架构,由两个主要组件网络组成,可以提供小目标分割的互补信息:
SSSF模块,它将来自多个尺度图像的全局或高级语义信息组合在一起;
TFE模块,它可以捕捉小目标目标的局部精细细节。将局部和全局特征信息相结合可以产生更准确的分割图。

为了识别密集重叠的小目标,一种方法是通过放大图像以参考和比较不同尺度下的形状或外观变化。然而,由于YOLO的backbone网络中的不同特征层具有不同的尺寸,传统的FPN融合机制只对小尺寸特征图进行上采样,并将其添加到前一层特征中,从而忽略了较大尺寸特征层中丰富的详细信息。为此,研究人员提出了TFE(Texture Feature Enhancement)模块,它将大、中、小尺寸的特征进行分离,并添加了较大尺寸的特征图,然后进行特征放大以增强详细特征信息。 

为了整合详细特征信息和多尺度特征信息,研究人员提出了CPAM(Channel and Position Attention Module)。CPAM的结构如图5所示,它由两个部分组成。第一个部分是通道注意网络,它从TFE(输入1)接收输入,用于提取不同通道中包含的代表性特征信息。第二个部分是位置注意网络,它接收来自通道注意网络和SSFF(输入2)的输出,并进行叠加,用于引入位置信息。通过这种方式,CPAM能够融合不同注意力机制,综合利用通道和位置信息,以提高目标识别的性能。

想要进一步了解论文详情,建议还是自行移步阅读原论文,这里就不再赘述了。

作者同时开源了项目,地址在这里,如下所示:

简单看下本文构筑的数据集:

实例标注内容如下所示:

2 0.6818181818181818 0.5457142857142857 0.6829545454545455 0.63 0.7 0.6328571428571429 0.9488636363636364 0.6328571428571429 0.9988636363636364 0.6342857142857142 0.9988636363636364 0.5485714285714286 0.9806818181818182 0.5471428571428572 0.9681818181818181 0.5371428571428571 0.95 0.55 0.9204545454545454 0.54 0.9011363636363636 0.5528571428571428 0.8715909090909091 0.5642857142857143 0.8443181818181819 0.56 0.8159090909090909 0.5528571428571428 0.7636363636363637 0.5371428571428571 0.7181818181818181 0.5485714285714286
0 0.10227272727272728 0.47285714285714286 0.11818181818181818 0.4785714285714286 0.13977272727272727 0.4785714285714286 0.1534090909090909 0.4785714285714286 0.17045454545454544 0.4828571428571429 0.18636363636363637 0.48142857142857143 0.20909090909090908 0.48142857142857143 0.24886363636363637 0.48142857142857143 0.2715909090909091 0.48714285714285716 0.2818181818181818 0.49142857142857144 0.31136363636363634 0.48857142857142855 0.3409090909090909 0.49 0.3704545454545455 0.49142857142857144 0.3886363636363636 0.49857142857142855 0.4193181818181818 0.5 0.43636363636363634 0.5071428571428571 0.46136363636363636 0.5085714285714286 0.49204545454545456 0.5071428571428571 0.5113636363636364 0.5128571428571429 0.5363636363636364 0.5157142857142857 0.5761363636363637 0.5128571428571429 0.6022727272727273 0.5142857142857142 0.6238636363636364 0.5171428571428571 0.634090909090909 0.5285714285714286 0.6534090909090909 0.5285714285714286 0.6806818181818182 0.5328571428571428 0.6863636363636364 0.5342857142857143 0.678409090909091 0.5371428571428571 0.6602272727272728 0.5342857142857143 0.6454545454545455 0.5342857142857143 0.634090909090909 0.5314285714285715 0.6181818181818182 0.5214285714285715 0.6056818181818182 0.5214285714285715 0.5795454545454546 0.5157142857142857 0.5659090909090909 0.5185714285714286 0.5238636363636363 0.5214285714285715 0.5136363636363637 0.5185714285714286 0.49204545454545456 0.5171428571428571 0.47045454545454546 0.5128571428571429 0.44545454545454544 0.5171428571428571 0.4238636363636364 0.5057142857142857 0.4102272727272727 0.5057142857142857 0.3886363636363636 0.5057142857142857 0.3659090909090909 0.4957142857142857 0.35 0.49714285714285716 0.31022727272727274 0.4928571428571429 0.2806818181818182 0.5 0.2556818181818182 0.48857142857142855 0.23295454545454544 0.49142857142857144 0.2 0.49 0.17386363636363636 0.48857142857142855 0.14545454545454545 0.48714285714285716 0.1215909090909091 0.48714285714285716

使用如下训练参数设置进行训练:

parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='weights/yolov5l-seg.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='models/segment/asf-yolo.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/bcc.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
parser.add_argument('--noplots', action='store_true', help='save no plot files')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default='runs/train-seg', help='save to project/name')
parser.add_argument('--name', default='improve', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
 
# Instance Segmentation Args
parser.add_argument('--mask-ratio', type=int, default=4, help='Downsample the truth masks to saving memory')
parser.add_argument('--no-overlap', action='store_true', help='Overlap masks train faster at slightly less mAP')
 
return parser.parse_known_args()[0] if known else parser.parse_args()

训练启动,日志输出如下:

训练完成如下:

等待训练完成后我们来看下具体的结果内容。

【F1】

【precision】

【recall】

【PR】

【混淆矩阵】

【Batch实例】

感兴趣的话也都可以自己动手实践一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/259884.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

性能压力测试--确保企业数字化业务稳健运行

随着企业的数字化转型和依赖云计算的普及&#xff0c;软件系统的性能已经成为企业成功运营的关键因素之一。性能压力测试作为确保系统在各种条件下都能高效运行的关键步骤&#xff0c;对企业的重要性不可忽视。以下是性能压力测试对企业的几个重要方面的影响和作用&#xff1a;…

行为型设计模式(二)责任链模式 策略模式

责任链模式 Chain of Responsibility 1、什么是责任链模式 责任链模式为请求创建一个接收者对象的链&#xff0c;每个接收者都包含对另一个接收者的引用。如果一个对象不能处理请求&#xff0c;它会将请求传递给链中的下一个接收者&#xff0c;如此模式下&#xff0c;请求沿着…

机器视觉工程师,我存多少钱可以躺平

钱钱钱&#xff01;还是钱&#xff01;除了钱还能聊点别的吗&#xff1f;钱可以让你生活的更好&#xff0c;也可以让你​在生活中的选择很无奈。 如果想要知道拥有多少存款才能躺平不上班&#xff0c;那么首先要明确躺平的定义。所谓的躺平&#xff0c;其实并不代表不能工作&a…

ASP.NET Core面试题之Redis高频问题

&#x1f388;&#x1f388;在.NET后端开发岗位中&#xff0c;如今也少不了、微服务、分布式、高并发高可用相关的面试题&#x1f388;&#x1f388; &#x1f44d;&#x1f44d;本文分享一些整理的Redis高频面试题&#x1f389; &#x1f44d;&#x1f44d;机会都是给有准备…

WPF——样式和控件模板、数据绑定与校验转换

样式和控件模板 合并资源字典 Style简单样式的定义和使用 ControlTemplate控件模板的定义和使用 定义 使用 Trigger触发器 数据绑定与校验转换 数据绑定的设置 代码层实现绑定 数据模板DataTemplate xml文件的读取与显示 方法的返回值作为源绑定到控件中ObjectDataProvider L…

Axure之中继器的使用(交互动作reperter属性Item属性)

目录 一.中继器的基本使用 二.中继器的动作&#xff08;增删改查&#xff09; 2.1 新增 2.2 删除 2.3 更新行 2.4 效果展示 2.5 模糊查询 三.reperter属性 在Axure中&#xff0c;中继器&#xff08;Repeater&#xff09;是一种功能强大的组件&#xff0c;用于创建重复…

ES集群G1回收器,堆空间无法被回收问题

ES堆空间不足的问题&#xff0c;困扰了我有两年的时间。dump堆去分析&#xff0c;也未能分析出来&#xff0c;堆到底是被什么占用了。 我把堆空间给了31.9G&#xff0c;这是指针压缩生效的临界值&#xff0c;如果再大就指针压缩失效了。 痛苦的是&#xff0c;随着时间的增长。堆…

【HarmonyOS开发】ArkTs关系型和非关系型数据库的存储封装

前面使用了首选项的存储方式&#xff0c;因此将其他的两种存储方式&#xff08;键值型数据库和关系型数据库&#xff09;也学习一下&#xff0c;简单记录一下&#xff0c;并进行封装&#xff0c;方便后续使用。 1、效果预览 2、使用条件 2.1 键值型数据库 键值型数据库实现数据…

linux 应用开发笔记---【线程】

1.概念&#xff1a; 线程是参与系统调度的最小单位&#xff0c;它被包含在进程中&#xff0c;是进程的实际运行单位 一个进程可以创建多个线程&#xff0c;多个线程并发运行&#xff0c;每个线程执行不同的任务 2.如何创建线程 当一个程序启动的时候&#xff0c;一个进程被…

小鹅通基于 TSE 云原生 API 网关的落地实践

导语 2023腾讯全球数字生态大会已于9月7-8日完美落幕&#xff0c;40专场活动展示了腾讯最新的前沿技术、核心产品、解决方案。 微服务与消息队列专场&#xff0c;我们邀请到了小鹅通的基础架构组负责人黄徐震为我们带来了《小鹅通基于 TSE 云原生网关的落地实践》的精彩演讲。…

TCP 核心工作机制

TCP 的核心知识&#xff1a;如何保证传输可靠 如何提高传输效率 如何保证传输可靠&#xff1a;确认应答机制 超时重传机制 如何提高传输效率&#xff1a;滑动窗口机制、流量控制机制、延时应答机制、捎带确认机制、拥塞控制机制 可靠机制 TCP的可靠性主要是通过 确认应答 …

多门店自助点餐+外卖二合一小程序系统源码:自助点餐+外卖配送 带完整搭建教程

互联网的普及和移动支付的便捷&#xff0c;餐饮行业也在经历着数字化转型。小编来给大家介绍一款多门店自助点餐外卖二合一小程序&#xff0c;带完整的搭建教程。 以下是部分代码示例&#xff1a; 系统特色功能一览&#xff1a; 1.多门店管理&#xff1a;支持一个平台管理多个…

华为OS与麒麟OS:华为自研操作系统的对决

导言 在移动操作系统领域&#xff0c;华为OS和麒麟OS代表了华为在自主研发方面的努力。本文将深入探讨这两个操作系统的特点、竞争关系以及它们在用户体验、生态系统建设等方面的差异。 1. 背景与起源 华为OS的诞生&#xff1a; 华为OS是华为公司为应对外部环境而自主…

【音视频 | AAC】AAC音频编码详解

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

网络基础【网线的制作、OSI七层模型、集线器、交换机介绍、路由器的配置】

目录 一.网线的制作 1.1.网线的标准 1.2.水晶头的做法 二.OSI七层模型、集线器、交换机介绍 集线器&#xff08;Hub&#xff09;&#xff1a; 交换机&#xff08;Switch&#xff09;&#xff1a; 三.路由器的配置 3.1.使用 3.2.常用的功能介绍 1、如何管理路由器 2、家…

SVN搭建指导

环境 centos 7.9 SVN安装方式一&#xff1a;yum 1.1 http服务 至今还没有搞定网页版&#xff0c;网页版需要搭建apache http服务。遇到如下问题&#xff1a; centos - svn: Could not open the requested SVN filesystem - Stack Overflow 在试了加777权限&#xff0c;加a…

Hal深入实战/perfetto-systrace实战/SurfaceFlinger合集-安卓framework开发实战开发

背景 hi&#xff0c;粉丝朋友们&#xff1a; 大家好&#xff01; 下面来介绍一下新的framework专题halperfettosurafceflinger&#xff0c;这个专题主要就是分为3大块&#xff0c;但是彼此直接又是相互关联的。 比如surfaceflingre模块深入分析需要用到hal相关的模块&#xff…

Git报错x509: certificate signed by unknown authority

下载报错&#xff1a; Error downloading object: model-00001-of-00008.safetensors (ed3ac49): Smudge error: Error downloading model-00001-of-00008.safetensors (ed3ac4983f682a999b0e4b6f072aad294c4fd9a7e968e90835ba5c4b466d3c7c): LFS: Get https://cdn-lfs.huggin…

百度侯震宇:AI原生与大模型将从三个层面重构云计算

12月20日&#xff0c;2023百度云智大会智算大会在北京举办&#xff0c;大会以「大模型重构云计算&#xff0c;Cloud for AI」为主题&#xff0c;深度聚焦大模型引发的云计算变革。 百度智能云表示&#xff0c;为满足大模型落地需求&#xff0c;正在基于「云智一体」战略重构…

〖大前端 - 基础入门三大核心之JS篇(58)〗- 面向对象案例

说明&#xff1a;该文属于 大前端全栈架构白宝书专栏&#xff0c;目前阶段免费&#xff0c;如需要项目实战或者是体系化资源&#xff0c;文末名片加V&#xff01;作者&#xff1a;哈哥撩编程&#xff0c;十余年工作经验, 从事过全栈研发、产品经理等工作&#xff0c;目前在公司…