【MATLAB第83期】基于MATLAB的LSTM代理模型的SOBOL全局敏感性运用

【MATLAB第83期】基于MATLAB的LSTM代理模型的SOBOL全局敏感性运用

引言

在前面几期,介绍了敏感性分析法,本期来介绍lstm作为代理模型的sobol全局敏感性分析模型。
【MATLAB第31期】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理回归问题MATLAB代码实现(持续更新)
【MATLAB第32期】【更新中】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理分类问题MATLAB代码实现
【MATLAB第63期】基于MATLAB的改进敏感性分析方法IPCC,拥挤距离与皮尔逊系数法结合实现回归与分类预测
【MATLAB第64期】【保姆级教程】基于MATLAB的SOBOL全局敏感性分析模型运用(含无目标函数,考虑代理模型)

二、SOBOL(无目标函数)

1.解决思路

(1)针对简单线性数据及非线性数据,用函数拟合得到公式,随后思路与上面一致。
(2)无法拟合得到公式, 即复杂非线性函数,需要通过借用机器学习模型,作为训练学习模型(黑箱子模型)
本文具体研究攻克第二种情况
有个前提(模型拟合性较好,对应数据较好)
即训练学习模型, 训练集和测试集拟合效果很棒。
如果拟合效果差,SOBOL分析结果一定存在较大误差。

2.模型选择

1、选用libsvm模型作为代理模型
原因:
(1)代理模型讲究运行效率快、精度高、模型简单 。libsvm符合以上情况,仅有的两超参数c、g经验值结果普遍较好,基本不用调参 。
(2)进行对比以bp为代表的神经网络模型,因其机理中涉及随机初始的权值阈值等参数,会让模型不够稳定。
(3)进行对比的rf随机森林模型, 训练效果远差于bp /libsvm ,且参数调整较为复杂。
(4)深度学习模型更适合大数据模型,对于平时用的小数据,传统模型不见得效果比深度模型差 ,其次深度学习运行时间、模型复杂程度,调参难度等问题明显无法与传统方法相比 。

2、选用lstm模型作为代理模型**
(1)训练精度较高,sobol误差更小,结果更令人信服。
(2)收敛速度较慢。

3.数据设置:常用的案例数据 ,103*8 ,前7列代表输入变量, 最后1列代表因变量。

4.选用模型后,几个点需要注意:
(1)数据固定,即训练样本/测试样本固定, 所代表的模型评价才够稳定。

(2)使用固定算子函数代码(神经网络代理模型是必要的) ,即开头代码为: rng default 或者rng(M)等 ,M根据实际测试效果确定。可固定输出结果,保证运行结果一致。此一致代表此刻你打开的matlab, 在不关闭情况下每次运行结果一致。跟matlab版本有关,系统版本,以及电脑有关。

(3)最为关键的一点 ,变量的上下限不能超过案例数据的上下限,为了保证模型的普适性和有效性!!!
比如案例数据的训练样本中, X1-X7的最小值为:
[137 0 0 160 4.4 708 650]
X1-X7的最大值为:
[374 193 260 240 19 1049.90 902]
那么你的sobol序列生成的数据也只能在这个范围,才能保证代理模型的有效性。
(4)生成样本的数量当然以多为好, 但不能跟案例数据样本数量差距太大,减少偶然性。
(5)代理模型效果(以lstm为例)

训练集数据的R2为:0.98842
测试集数据的R2为:0.97992
训练集数据的MAE为:0.653
测试集数据的MAE为:0.79625
训练集数据的MBE为:0.12945
测试集数据的MBE为:0.32146
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/2644363748274fb0bb57632e37cff4b5.png

个人认为,训练集和测试集R2如果均大于0.95还是可以的,评价指标好坏全凭主观意思。包括评价指标的选择,不一定是R2,R2更适合这样的波动的曲线 。

(6)保存模型所需要的变量

save lstmnet model ps_output ps_input
通过sobol生成样本进行仿真预测。 

3.SOBOL模型分析

(1)sobol参数设置

%% 设定:给定参数个数和各个参数的范围
D=7;% 7个参数
M=D*2;%
nPop=80;% 采样点个数,跟训练样本数量大概一致
VarMin=[137	0	0	160	4.4	708	650];%各个参数下限
VarMax=[374	193	260	240	19 1049.90	902];%各个参数上限

nPop=200

(2)运行结果

敏感程度(libsvm作为代理模型):X4>X3≈X1>X7>X6>X5>X2
在这里插入图片描述
敏感程度(lstm作为代理模型):X2>X1>X3>X7>X6>X2>X5
在这里插入图片描述
lstm总体来说与svm敏感性结果差异不大。

三、代码获取

其中,lstm代理模型的目标函数加密,不影响使用。
私信回复“83期”即可获取下载链接。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/258511.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

软件测试面试题及答案(史上最全)

以下是软件测试相关的面试题及答案,欢迎大家参考! 1、你的测试职业发展是什么? 测试经验越多,测试能力越高。所以我的职业发展是需要时间积累的,一步步向着高级测试工程师奔去。而且我也有初步的职业规划,前3年积累测试经验&…

界面控件DevExpress WPF Dock组件,轻松创建类Visual Studio窗口界面!

本文主要为大家介绍DevExpress WPF控件中的Dock组件,它能帮助用户轻松创还能受Microsoft Visual Studio启发的Dock窗口界面。 P.S:DevExpress WPF拥有120个控件和库,将帮助您交付满足甚至超出企业需求的高性能业务应用程序。通过DevExpress …

使用Python将OSS文件免费下载到本地:第三步 提供一个从ECS中下载和删除文件的接口

大家好,我是水滴~~ 本文将介绍了使用的知识点、以及利用 Flask 框架提供从 ECS 中下载和删除的文件接口代码、并对该代码进行详细解析、最后给出部署方案,希望能对你有所帮助! 《Python入门核心技术》专栏总目录・点这里 文章目录 1. 本文知…

【Unity】运行时创建曲线(贝塞尔的运用)

[Unity]运行时创建线(贝塞尔的运用) 1. 实现的目标 在运行状态下创建一条可以使用贝塞尔方法实时编辑的网格曲线。 2. 原理介绍 2.1 曲线的创建 unity建立网格曲线可以参考Unity程序化网格体的实现方法。主要分为顶点,三角面&#xff0c…

msal auzer 强制刷新获取令牌

背景:msal auzer token 过期时间微软默认事60至90分钟,普遍取中间值,现渗透测试部分(Qtester)要求30分token 过期。且不可使用msal的安全机制。 解决方案:‘ 后端,解析token 获取发证时间 ia…

【C++入门到精通】 原子性操作库(atomic) C++11 [ C++入门 ]

阅读导航 引言一、原子性操作库简介二、原子变量1. 原子类型2. 原子类型函数3. 使用示例 三、总结温馨提示 引言 当谈及并发编程时,确保数据的安全性和一致性是至关重要的。在C11中引入的原子性操作库(atomic)为我们提供了一种有效且可靠的方…

我的创作纪念日——成为创作者第1024天

机缘 一、前言 早上收到CSDN的推送信息,今天是我成为创作者的第1024天,回想起自己已经好久没有写博客了,突然间很有感触,想水一篇文章,跟小伙伴们分享一下我的经历。 二、自我介绍 我出生在广东潮汕地区的一个小城…

(1)(1.9) MSP (version 4.2)

文章目录 前言 1 协议概述 2 配置 3 参数说明 前言 ArduPilot 支持 MSP 协议,可通过任何串行端口进行遥测、OSD 和传感器。这样,ArduPilot 就能将遥测数据发送到 MSP 兼容设备(如大疆护目镜),用于屏幕显示&#x…

【数据结构】八大排序之简单选择排序算法

🦄个人主页:修修修也 🎏所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 目录 一.简单选择排序简介及思路 二.简单选择排序的代码实现 三.简单选择排序的优化 四.简单选择排序的时间复杂度分析 结语 一.简单选择排序简介及思路 简单选择排序算法…

11 v-bind指令

概述 v-bind指令可以说是Vue3中最常用的指令之一,使用v-bind,我们几乎能够给任何实现动态的绑定比值。 这里,我们主要演示以下,通过v-bind动态绑定CSS样式。 基本用法 我们创建src/components/Demo11.vue,在这个组…

【Git】Git基本操作

文章目录 Git 是什么Git 的优点Git 安装Linux UbuntuLinux CentOsWindows Git 基本操作1. 创建 Git 本地仓库2. 配置 Git3. Git工作区、暂存区和版本库4. 添加文件5. 查看 .git 文件6. 修改文件7. 版本回退 Git 是什么 Git是一个免费的、开源的分布式版本控制系统,…

Axure RP - 交互设计的强大引擎

目录 前言 1. 交互设计:连接用户与产品的纽带 2. 情景设计:预测用户行为的未来 3. 演示和共享:让设计活起来 我的其他博客 前言 在数字化时代,用户体验的重要性日益突显,而交互设计成为塑造产品与用户互动的关键。…

大创项目推荐 深度学习 机器视觉 人脸识别系统 - opencv python

文章目录 0 前言1 机器学习-人脸识别过程人脸检测人脸对其人脸特征向量化人脸识别 2 深度学习-人脸识别过程人脸检测人脸识别Metric Larning 3 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习 机器视觉 人脸识别系统 该项目…

抢先看!Salesforce Spring ‘24中的10个亮点功能!

Spring 24来临在即,Preview Orgs已上线。在Spring 24中,将会为管理员、开发人员和顾问带来更多新功能。在这片云计算的海洋里,一些亮点功能总能在Salesforce生态系统中引起强烈反响。本篇文章为学习者们盘点了Spring 24中的10个亮点功能&…

什么是年份酒?红酒也有年份酒?

提到年份酒,人们第一时间会想到白酒,市场上有5年,20年,30年不等的各种年份酒。云仓酒庄的品牌雷盛红酒LEESON分享那么,什么是年份酒,红酒有没有年份酒呢? 在红酒酒标上看到一些与年份有关的数字…

海外呼叫中心是什么?海外呼叫中心有哪些功能?海外呼叫中心有哪些应用场景?

海外呼叫中心是什么? 海外呼叫中心通过电话呼出、呼入、智能外呼等渠道,提供客户支持和进行营销、通知等服务。可以为全球范围内的客户提供24小时不间断的电话服务支持,解决客户的疑问和需求。这些呼叫中心通常是有能够覆盖到全球的语音线路…

光条中心线提取-Steger算法 [OpenCV]

在线结构光视觉传感器中,由线激光器发射出的线结构光,在本质上为一个连续且具有一定厚度的空间光平面,而在目标表面上所形成的具有一定宽度的光条特征,即为该光平面与目标表面相交而成的交线。在该空间光平面的厚度方向上&#xf…

MSSql将test数据库还原为另外一个名字test1的数据库

有时候咱们需要将sqlserver数据库还原成另一个数据库中,如下: 1.备份原数据库。右击原数据库选择如下 2.跳到如下页面,如果目标有记录,那么全部进行删除,然后再添加。在“文件名”文本框中输入有效的路径和文件名&…

信号处理基础之噪声与降噪(一) | 噪声分类及python代码实现

后续将给大家分享信号处理基础系列文章,本期是讲噪声相关知识,包括噪声的定义、分类及python代码实现。 1. 噪声的定义 噪声是信息信号在传输过程中所受到的各种各样干扰信号的总成,其直接影响信号的传输质量,甚至破坏正常的信号…

Flask重定向后无效果前端无跳转无反应问题

在网上搜了一下并没有什么好的解决方案,有的话也只是告诉你如何修改代码,并没有讲明白其中的原理以及导致问题的核心,因此特意去了解了一下HTTP的规范找到了答案 问题说明 问题出现的流程大致都是前端发送Ajax请求给后端,进行一些…