YOLOv8改进 | 主干篇 | 轻量级网络ShuffleNetV1(附代码+修改教程)

一、本文内容

本文给大家带来的改进内容是ShuffleNetV1,这是一种为移动设备设计的高效CNN架构。它通过使用点群卷积和通道混洗等操作,减少了计算成本,同时保持了准确性,通过这些技术,ShuffleNet在降低计算复杂度的同时,也优化了内存使用,使其更适合低功耗的移动设备(我在YOLOv8n上修改该主干计算量仅为2GFLOPs,但是参数量还是有一定上涨,其非常适合轻量化的读者来使用)。本文通过介绍其主要框架原理,然后教你如何添加该网络结构到网络模型中。

适用检测目标:这个模型非常适合轻量化的读者来使用。

推荐指数:⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

效果回顾展示->

目录

一、本文内容

二、ShuffleNetV1框架原理​编辑

三、ShuffleNetV1核心代码

 四、手把手教你添加ShuffleNetV1网络结构

修改一

修改二

修改三 

修改四

修改五 

修改六 

修改七

修改八

五、ShuffleNetV1的yaml文件

六、成功运行记录 

七、本文总结


二、ShuffleNetV1框架原理

官方论文地址: 官方论文地址

官方代码地址: 官方代码地址


ShuffleNet的创新机制为点群卷积和通道混:使用了新的操作点群卷积(pointwise group convolution)和通道混洗(channel shuffle),以减少计算成本,同时保持网络精度

您上传的图片展示的是ShuffleNet架构中的通道混洗机制。这一机制通过两个堆叠的分组卷积(GConv)来实现:

图示(a):展示了两个具有相同分组数量的堆叠卷积层。每个输出通道仅与同一组内的输入通道相关联。
图示(b):
在不使用通道混洗的情况下,展示了在GConv1之后,GConv2从不同分组获取数据时输入和输出通道是如何完全相关联的。
图示(c:提供了与(b)相同的实现,但使用了通道混洗来允许跨组通信,从而使网络内更有效和强大的特征学习成为可能。

上面的图片描述了ShuffleNet架构中的ShuffleNet单元。这些单元是网络中的基本构建块,具体包括:

图示(a):一个基本的瓶颈单元,使用了深度可分离卷积(DWConv)和一个简单的加法(Add)来融合特征。
图示(b):在标准瓶颈单元的基础上,引入了点群卷积(GConv)和通道混洗操作,以增强特征的表达能力。
图示(c):适用于空间下采样的ShuffleNet单元,使用步长为2的平均池化(AVG Pool)和深度可分离卷积,再通过通道混洗和点群卷积进一步处理特征,最后通过连接操作(Concat)合并特征。


三、ShuffleNetV1核心代码

下面的代码是整个ShuffleNetV1的核心代码,其中有个版本,对应的GFLOPs也不相同,使用方式看章节四。

# Copyright 2022 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from typing import Any, List, Optional

import torch
from torch import Tensor
from torch import nn

__all__ = [
    "ShuffleNetV1",
    "shufflenet_v1_x0_5", "shufflenet_v1_x1_0", "shufflenet_v1_x1_5", "shufflenet_v1_x2_0",
]


class ShuffleNetV1(nn.Module):

    def __init__(
            self,
            repeats_times: List[int],
            stages_out_channels: List[int],
            groups: int = 8,
            num_classes: int = 1000,
    ) -> None:
        super(ShuffleNetV1, self).__init__()
        in_channels = stages_out_channels[0]

        self.first_conv = nn.Sequential(
            nn.Conv2d(3, in_channels, (3, 3), (2, 2), (1, 1), bias=False),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(True),
        )
        self.maxpool = nn.MaxPool2d((3, 3), (2, 2), (1, 1))

        features = []
        for state_repeats_times_index in range(len(repeats_times)):
            out_channels = stages_out_channels[state_repeats_times_index + 1]

            for i in range(repeats_times[state_repeats_times_index]):
                stride = 2 if i == 0 else 1
                first_group = state_repeats_times_index == 0 and i == 0
                features.append(
                    ShuffleNetV1Unit(
                        in_channels,
                        out_channels,
                        stride,
                        groups,
                        first_group,
                    )
                )
                in_channels = out_channels
        self.features = nn.Sequential(*features)

        self.globalpool = nn.AvgPool2d((7, 7))

        self.classifier = nn.Sequential(
            nn.Linear(stages_out_channels[-1], num_classes, bias=False),
        )

        # Initialize neural network weights
        self._initialize_weights()
        self.index = stages_out_channels[-3:]
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def forward(self, x: Tensor) -> list[Optional[Any]]:
        x = self.first_conv(x)
        x = self.maxpool(x)
        results = [None, None, None, None]
        for index, model in enumerate(self.features):
            x = model(x)
            # results.append(x)
            if index == 0:
                results[index] = x
            if x.size(1) in self.index:
                position = self.index.index(x.size(1))  # Find the position in the index list
                results[position + 1] = x
        return results

    def _initialize_weights(self) -> None:
        for name, module in self.named_modules():
            if isinstance(module, nn.Conv2d):
                if 'first' in name:
                    nn.init.normal_(module.weight, 0, 0.01)
                else:
                    nn.init.normal_(module.weight, 0, 1.0 / module.weight.shape[1])
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
            elif isinstance(module, nn.BatchNorm2d):
                nn.init.constant_(module.weight, 1)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0.0001)
                nn.init.constant_(module.running_mean, 0)
            elif isinstance(module, nn.BatchNorm1d):
                nn.init.constant_(module.weight, 1)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0.0001)
                nn.init.constant_(module.running_mean, 0)
            elif isinstance(module, nn.Linear):
                nn.init.normal_(module.weight, 0, 0.01)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)


class ShuffleNetV1Unit(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            stride: int,
            groups: int,
            first_groups: bool = False,
    ) -> None:
        super(ShuffleNetV1Unit, self).__init__()
        self.stride = stride
        self.groups = groups
        self.first_groups = first_groups
        hidden_channels = out_channels // 4

        if stride == 2:
            out_channels -= in_channels
            self.branch_proj = nn.AvgPool2d((3, 3), (2, 2), (1, 1))

        self.branch_main_1 = nn.Sequential(
            # pw
            nn.Conv2d(in_channels, hidden_channels, (1, 1), (1, 1), (0, 0), groups=1 if first_groups else groups,
                      bias=False),
            nn.BatchNorm2d(hidden_channels),
            nn.ReLU(True),
            # dw
            nn.Conv2d(hidden_channels, hidden_channels, (3, 3), (stride, stride), (1, 1), groups=hidden_channels,
                      bias=False),
            nn.BatchNorm2d(hidden_channels),
        )
        self.branch_main_2 = nn.Sequential(
            # pw-linear
            nn.Conv2d(hidden_channels, out_channels, (1, 1), (1, 1), (0, 0), groups=groups, bias=False),
            nn.BatchNorm2d(out_channels),
        )

        self.relu = nn.ReLU(True)

    def channel_shuffle(self, x):
        batch_size, channels, height, width = x.data.size()
        assert channels % self.groups == 0
        group_channels = channels // self.groups

        out = x.reshape(batch_size, group_channels, self.groups, height, width)
        out = out.permute(0, 2, 1, 3, 4)
        out = out.reshape(batch_size, channels, height, width)

        return out

    def forward(self, x: Tensor) -> Tensor:
        identify = x

        out = self.branch_main_1(x)
        out = self.channel_shuffle(out)
        out = self.branch_main_2(out)

        if self.stride == 2:
            branch_proj = self.branch_proj(x)
            out = self.relu(out)
            out = torch.cat([branch_proj, out], 1)
            return out
        else:
            out = torch.add(out, identify)
            out = self.relu(out)
            return out


def shufflenet_v1_x0_5(**kwargs: Any) -> ShuffleNetV1:
    model = ShuffleNetV1([4, 8, 4], [16, 192, 384, 768], 8, **kwargs)

    return model


def shufflenet_v1_x1_0(**kwargs: Any) -> ShuffleNetV1:
    model = ShuffleNetV1([4, 8, 4], [24, 384, 768, 1536], 8, **kwargs)

    return model


def shufflenet_v1_x1_5(**kwargs: Any) -> ShuffleNetV1:
    model = ShuffleNetV1([4, 8, 4], [24, 576, 1152, 2304], 8, **kwargs)

    return model


def shufflenet_v1_x2_0(**kwargs: Any) -> ShuffleNetV1:
    model = ShuffleNetV1([4, 8, 4], [48, 768, 1536, 3072], 8, **kwargs)

    return model


if __name__ == "__main__":

    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)

    # Model
    model = shufflenet_v1_x0_5()

    out = model(image)
    print(out)

 四、手把手教你添加ShuffleNetV1网络结构

这个主干的网络结构添加起来算是所有的改进机制里最麻烦的了,因为有一些网略结构可以用yaml文件搭建出来,有一些网络结构其中的一些细节根本没有办法用yaml文件去搭建,用yaml文件去搭建会损失一些细节部分(而且一个网络结构设计很多细节的结构修改方式都不一样,一个一个去修改大家难免会出错),所以这里让网络直接返回整个网络,然后修改部分 yolo代码以后就都以这种形式添加了,以后我提出的网络模型基本上都会通过这种方式修改,我也会进行一些模型细节改进。创新出新的网络结构大家直接拿来用就可以的。下面开始添加教程->

(同时每一个后面都有代码,大家拿来复制粘贴替换即可,但是要看好了不要复制粘贴替换多了)


修改一

我们复制网络结构代码到“ultralytics/nn/modules”目录下创建一个py文件复制粘贴进去 ,我这里起的名字是ShuffleNetV1。


修改二

找到如下的文件"ultralytics/nn/tasks.py" 在开始的部分导入我们的模型如下图。


修改三 

添加如下两行代码!!!


修改四

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名,我这里只添加了部分的版本,大家有兴趣这个ShuffleNetV1还有更多的版本可以添加,看我给的代码函数头即可。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m()
            c2 = m.width_list  # 返回通道列表
            backbone = True


修改五 

下面的两个红框内都是需要改动的。 

        if isinstance(c2, list):
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type


        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type


修改六 

如下的也需要修改,全部按照我的来。

代码如下把原先的代码替换了即可。 

        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print

        save.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            if len(c2) != 5:
                ch.insert(0, 0)
        else:
            ch.append(c2)


修改七

修改七和前面的都不太一样,需要修改前向传播中的一个部分, 已经离开了parse_model方法了。

可以在图片中开代码行数,没有离开task.py文件都是同一个文件。 同时这个部分有好几个前向传播都很相似,大家不要看错了,是70多行左右的!!!,同时我后面提供了代码,大家直接复制粘贴即可,有时间我针对这里会出一个视频。

代码如下->

    def _predict_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5: # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1] # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

到这里就完成了修改部分,但是这里面细节很多,大家千万要注意不要替换多余的代码,导致报错,也不要拉下任何一部,都会导致运行失败,而且报错很难排查!!!很难排查!!! 


修改八

我们找到如下文件'ultralytics/utils/torch_utils.py'按照如下的图片进行修改,否则容易打印不出来计算量。

五、ShuffleNetV1的yaml文件

复制如下yaml文件进行运行!!! 

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, shufflenet_v1_x0_5, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)


六、成功运行记录 

下面是成功运行的截图,已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


七、本文总结

 到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/257936.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

1.【分布式】分布式事务详解

分布式事务 1.分布式事务是什么&#xff1f;数据库事务 2.分布式事务产生的原因&#xff1f;存储层拆分服务层拆分 3.分布式事务解决方案4.分布式事务有哪些开源组件SeateTCC 分布式服务组件基于消息补偿的最终一致性 5.两阶段提交&#xff0c;三阶段协议详解二阶段提交协议三阶…

长短期记忆(LSTM)神经网络-多输入分类

目录 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 亮点与优势&#xff1a; 二、实际运行效果&#xff1a; 三、部分程序&#xff1a; 四、完整程序下载&#xff1a; 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 本代码基于Matlab平台编译&am…

SpringCloud源码探析(十二)-基于SpringBoot开发自定义中间件

1.概述 中间件是一种介于操作系统和应用软件之间&#xff0c;为应用软件提供服务功能的软件&#xff0c;按功能划分有消息中间件&#xff08;Kafka、RocketMQ&#xff09;、通信中间件&#xff08;RPC通信中间件&#xff0c;dubbo等&#xff09;&#xff0c;应用服务器等。中间…

k8s-ingress特性 9

TLS加密 创建证书 测试访问 auth认证 创建认证文件 rewrite重定向 进入域名时&#xff0c;会自动重定向到hostname.html 示例&#xff1a; 测试 版本的升级迭代&#xff0c;之前利用控制器进行滚动更新&#xff0c;在升级过程中无法做到快速回滚 更加平滑的升级&#xff1…

Axure中继器的使用实现表格的增删改查的自定义文件

目录 一.认识中继器 1.1.什么中继器 1.2. 中继器的组成 1.3.中继器的使用场景 二.中继器进行增删改查 三.十例表格增删改查 还有Axure这个东西许多东西需要我们去发现&#xff0c;我们需要去细心的研究&#xff0c;我们一起加油吧&#xff01;&#xff01;&#xff01;今…

Opencv实验合集——实验四:图片融合

1.概念 图像融合是将两个或多个图像结合在一起&#xff0c;创建一个新的图像的过程。这个过程的目标通常是通过合并图像的信息来获得比单个图像更全面、更有信息量的结果。图像融合可以在许多领域中应用&#xff0c;包括计算机视觉、遥感、医学图像处理等。 融合的方法有很多…

无人机在融合通信系统中的应用

无人驾驶飞机简称“无人机”&#xff0c;是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞行器&#xff0c;现今无人机在航拍、农业、快递运输、测绘、新闻报道多个领域中都有深度的应用。 在通信行业中&#xff0c;无人机广泛应用于交通&#xff0c;救援&#xff0c;消…

第十七章 爬虫scrapy登录与中间件2

文章目录 数据盘区太快会报错&#xff0c;setting中配置延迟 连接提取器

elementui中的el-table,当使用fixed属性时,table主体会遮挡住滚动条的大半部分,导致很难选中。

情况&#xff1a; 解决&#xff1a; el-table加个类&#xff0c;这里取为class"table" 然后是样式部分&#xff1a; <style scoped lang"scss"> ::v-deep.table {// 滚动条高度调整::-webkit-scrollbar {height: 15px;}// pointer-events 的基本信…

监控k8s controller和scheduler,创建serviceMonitor以及Rules

目录 一、修改kube-controller和kube-schduler的yaml文件 二、创建service、endpoint、serviceMonitor 三、Prometheus验证 四、创建PrometheusRule资源 五、Prometheus验证 直接上干货 一、修改kube-controller和kube-schduler的yaml文件 注意&#xff1a;修改时要一个节…

Databend 开源周报第 124 期

Databend 是一款现代云数仓。专为弹性和高效设计&#xff0c;为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务&#xff1a;https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展&#xff0c;遇到更贴近你心意的 Databend 。 新增对 Delta 和…

SpringBlade export-user SQL 注入漏洞复现

0x01 产品简介 SpringBlade 是一个由商业级项目升级优化而来的 SpringCloud 分布式微服务架构、SpringBoot 单体式微服务架构并存的综合型项目。 0x02 漏洞概述 SpringBlade v3.2.0 及之前版本框架后台 export-user 路径存在安全漏洞,攻击者利用该漏洞可通过组件customSqlS…

node.js mongoose中间件(middleware)

目录 简介 定义模型 注册中间件 创建doc实例&#xff0c;并进行增删改查 方法名和注册的中间件名相匹配 执行结果 分析 错误处理中间件 手动抛出错误 注意点 简介 在mongoose中&#xff0c;中间件是一种允许在执行数据库操作前&#xff08;pre&#xff09;或后&…

【AI图集】猫狗的自动化合成图集

猫是一种哺乳动物&#xff0c;通常被人们作为宠物饲养。它们有柔软的毛发&#xff0c;灵活的身体和尖锐的爪子。猫是肉食性动物&#xff0c;主要以肉类为食&#xff0c;但也可以吃一些蔬菜和水果。猫通常在夜间活动&#xff0c;因此它们需要足够的玩具和活动空间来保持健康和快…

【python基础】-- yarn add 添加依赖的各种类型

目录 1、安装 yarn 1.1 使用npm安装 1.2 查看版本 1.3 yarn 淘宝源配置 2、安装命令说明 2.1 yarn add&#xff08;会更新package.json和yarn.lock&#xff09; 2.2 yarn install 2.3 一些操作 2.3.1 发布包 2.3.2 移除一个包 2.3.3 更新一个依赖 2.3.4 运行脚本 …

ASP.NET Core MVC依赖注入理解(极简个人版)

依赖注入 文献来源&#xff1a;《Pro ASP.NET Core MVC》 Adam Freeman 第18章 依赖注入 1 依赖注入原理 所有可能变化的地方都用接口在使用接口的地方用什么实体类通过在ConfigureService中注册解决注册的实体类需要指定在何种生命周期中有效 TransientScopedSingleton 2…

【办公软件】C# NPOI 操作Excel 案例

文章目录 1、加入NPOI 程序集&#xff0c;使用nuget添加程序集2、引用NPOI程序集3、设置表格样式4、excel加载图片5、导出excel 1、加入NPOI 程序集&#xff0c;使用nuget添加程序集 2、引用NPOI程序集 private IWorkbook ExportExcel(PrintQuotationOrderViewModel model){//…

国货之光,复旦发布大模型训练效率工具 CoLLiE,效率显著提升

在这个信息爆炸的时代&#xff0c;大型语言模型&#xff08;LLM&#xff09;成为理解和挖掘文本信息的重要工具。为了更好地适应各种应用场景&#xff0c;对 LLM 进行定制化训练变得至关重要。 在预训练 LLM 的过程中&#xff0c;无论是初学者还是经验丰富的炼丹人士&#xff…

数据分析基础之《numpy(4)—ndarry运算》

一、逻辑运算 当我们要操作符合某一条件的数据时&#xff0c;需要用到逻辑运算 1、运算符 满足条件返回true&#xff0c;不满足条件返回false # 重新生成8只股票10个交易日的涨跌幅数据 stock_change np.random.normal(loc0, scale1, size(8, 10))# 获取前5行前5列的数据 s…

光模块市场分析与发展趋势预测

光模块是光通信领域的重要组成部分&#xff0c;随着数字经济&#xff0c;大数据&#xff0c;云计算&#xff0c;人工智能等行业的兴起&#xff0c;光模块市场经历了快速发展&#xff0c;逐渐在数据中心、无线回传、电信传输等应用场景中得到广泛应用。本文将基于当前光模块全球…