Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类

目录

前言

1 经验模态分解EMD的Python示例

2 轴承故障数据的预处理

2.1 导入数据

2.2 制作数据集和对应标签

2.3 故障数据的EMD分解可视化

2.4 故障数据的EMD分解预处理

3 基于EMD-CNN-GRU并行模型的轴承故障诊断分类

3.1 训练数据、测试数据分组,数据分batch

3.2 定义EMD-CNN-GRU并行分类网络模型

3.3 设置参数,训练模型


往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru轴承数据集-CSDN博客

Python轴承故障诊断 (一)短时傅里叶变换STFT-CSDN博客

Python轴承故障诊断 (二)连续小波变换CWT-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD-CSDN博客

Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客

Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客

Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客

前言

本文基于凯斯西储大学(CWRU)轴承数据,进行经验模态分解EMD的介绍与数据预处理,最后通过Python实现基于EMD的CNN-GRU并行模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru轴承数据集-CSDN博客

经验模态分解EMD的原理可以参考如下:   

Python轴承故障诊断 (三)经验模态分解EMD-CSDN博客

1 经验模态分解EMD的Python示例

第一步,Python 中 EMD包的下载安装:

# 下载
pip install EMD-signal
​
# 导入
from PyEMD import EMD

切记,很多同学安装失败,不是 pip install EMD,也不是pip install PyEMD, 如果 pip list 中 已经有 emd,emd-signal,pyemd包的存在,要先 pip uninstall 移除相关包,然后再进行安装。

第二步,导入相关包

import numpy as np
from PyEMD import EMD
​
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')

第三步,生成一个信号示例

t = np.linspace(0, 1, 1000)
signal = np.sin(11*2*np.pi*t*t) + 6*t*t

第四步,创建EMD对象,进行分解

emd = EMD()
# 对信号进行经验模态分解
IMFs = emd(signal)

第五步,绘制原始信号和每个本征模态函数(IMF)

plt.figure(figsize=(15,10))
​
plt.subplot(len(IMFs)+1, 1, 1)
​
plt.plot(t, signal, 'r')
plt.title("原始信号")
​
for num, imf in enumerate(IMFs):
    plt.subplot(len(IMFs)+1, 1, num+2)
    plt.plot(t, imf)
    plt.title("IMF "+str(num+1))
​
plt.show()

2 轴承故障数据的预处理

2.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

2.2 制作数据集和对应标签

第一步, 生成数据集

第二步,制作数据集和标签

# 制作数据集和标签
import torch
​
# 这些转换是为了将数据和标签从Pandas数据结构转换为PyTorch可以处理的张量,
# 以便在神经网络中进行训练和预测。
​
def make_data_labels(dataframe):
    '''
        参数 dataframe: 数据框
        返回 x_data: 数据集     torch.tensor
            y_label: 对应标签值  torch.tensor
    '''
    # 信号值
    x_data = dataframe.iloc[:,0:-1]
    # 标签值
    y_label = dataframe.iloc[:,-1]
    x_data = torch.tensor(x_data.values).float()
    y_label = torch.tensor(y_label.values, dtype=torch.int64)  # 指定了这些张量的数据类型为64位整数,通常用于分类任务的类别标签
    return x_data, y_label
​
# 加载数据
train_set = load('train_set')
val_set = load('val_set')
test_set = load('test_set')
​
# 制作标签
train_xdata, train_ylabel = make_data_labels(train_set)
val_xdata, val_ylabel = make_data_labels(val_set)
test_xdata, test_ylabel = make_data_labels(test_set)
# 保存数据
dump(train_xdata, 'trainX_1024_10c')
dump(val_xdata, 'valX_1024_10c')
dump(test_xdata, 'testX_1024_10c')
dump(train_ylabel, 'trainY_1024_10c')
dump(val_ylabel, 'valY_1024_10c')
dump(test_ylabel, 'testY_1024_10c')

2.3 故障数据的EMD分解可视化

选择正常信号和 0.021英寸内圈、滚珠、外圈故障信号数据来做对比

第一步,导入包,读取数据

import numpy as np
from scipy.io import loadmat
import numpy as np
from scipy.signal import stft
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')
​
# 读取MAT文件   
data1 = loadmat('0_0.mat')  # 正常信号
data2 = loadmat('21_1.mat') # 0.021英寸 内圈
data3 = loadmat('21_2.mat') # 0.021英寸 滚珠
data4 = loadmat('21_3.mat') # 0.021英寸 外圈
# 注意,读取出来的data是字典格式,可以通过函数type(data)查看。

第二步,数据集中统一读取 驱动端加速度数据,取一个长度为1024的信号进行后续观察和实验

# DE - drive end accelerometer data 驱动端加速度数据
data_list1 = data1['X097_DE_time'].reshape(-1)
data_list2 = data2['X209_DE_time'].reshape(-1)  
data_list3 = data3['X222_DE_time'].reshape(-1)
data_list4 = data4['X234_DE_time'].reshape(-1)
# 划窗取值(大多数窗口大小为1024)
​
time_step= 1024
data_list1 = data_list1[0:time_step]
data_list2 = data_list2[0:time_step]
data_list3 = data_list3[0:time_step]
data_list4 = data_list4[0:time_step]

第三步,进行数据可视化

plt.figure(figsize=(20,10))
plt.subplot(2,2,1)
plt.plot(data_list1)
plt.title('正常')
plt.subplot(2,2,2)
plt.plot(data_list2)
plt.title('内圈')
plt.subplot(2,2,3)
plt.plot(data_list3)
plt.title('滚珠')
plt.subplot(2,2,4)
plt.plot(data_list4)
plt.title('外圈')
plt.show()

第四步,首先对正常数据进行EMD分解

import numpy as np
import matplotlib.pyplot as plt
from PyEMD import EMD
​
t = np.linspace(0, 1, time_step)
data = np.array(data_list1)
# 创建 EMD 对象
emd = EMD()
​
# 对信号进行经验模态分解
IMFs = emd(data)
​
# 绘制原始信号和每个本征模态函数(IMF)
plt.figure(figsize=(15,10))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(t, data, 'r')
plt.title("Original signal", fontsize=10)
​
for num, imf in enumerate(IMFs):
    plt.subplot(len(IMFs)+1, 1, num+2)
    plt.plot(t, imf)
    plt.title("IMF "+str(num+1), fontsize=10)
    # 增加第一排图和第二排图之间的垂直间距
plt.subplots_adjust(hspace=0.4, wspace=0.2)
plt.show()

其次,内圈故障EMD分解:

然后,滚珠故障EMD分解:

最后,外圈故障EMD分解:

注意,在信号的制作过程中,信号长度的选取比较重要,选择信号长度为1024,既能满足信号在时间维度上的分辨率,也能在后续的EMD分解中分解出数量相近的IMF分量,为进一步做故障模式识别打下基础。

2.4 故障数据的EMD分解预处理

对于EMD分解出的IMF分量个数,并不是所有的样本信号都能分解出8个分量,需要做一下定量分析:

import numpy as np
from PyEMD import EMD
​
# 加载训练集
train_xdata = load('trainX_1024_10c')
data = np.array(train_xdata)
​
# 创建 EMD 对象
emd = EMD()
​
print("测试集:", len(data))
count_min = 0
count_max = 0
count_7 = 0
# 对数据进行EMD分解
for i in range(1631):
    imfs = emd(data[i], max_imf=8)  # max_imf=8
    if len(imfs) > 8 :
        count_max += 1
    elif len(imfs) < 7:
        count_min += 1
    elif len(imfs) == 7:
        count_7 += 1
​
​
print("分解结果IMF大于8:", count_max)
print("分解结果IMF小于7:", count_min)
print("分解结果IMF等于7:", count_7)

由结果可以看出,大部分信号样本 都分解出8个分量,将近1/3的信号分解的不是8个分量。EMD设置不了分解出模态分量的数量(函数自适应),为了使一维信号分解,达到相同维度的分量特征,有如下3种处理方式:

  • 删除分解分量不统一的样本(少量存在情况可以采用);

  • 对于分量个数少的样本采用0值或者其他方法进行特征填充,使其对齐其他样本分量的维度(向多兼容);

  • 合并分量数量多的信号(向少兼容);

本文采用第二、三条结合的方式进行预处理,即删除分量小于7的样本,对于分量大于7的样本,把多余的分量进行合并,使所有信号的分量特征保持同样的维度。

3 基于EMD-CNN-GRU并行模型的轴承故障诊断分类

下面基于EMD分解后的轴承故障数据,先通过CNN进行卷积池化操作提取信号的空间特征,同时将信号送入GRU层提取时序特征,最后把空间特征和时序特征进行融合,实现CNN-GRU并行模型的分类方法进行讲解:

3.1 训练数据、测试数据分组,数据分batch

import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练
​
# 加载数据集
def dataloader(batch_size, workers=2):
    # 训练集
    train_xdata = load('trainX_1024_10c')
    train_ylabel = load('trainY_1024_10c')
    # 验证集
    val_xdata = load('valX_1024_10c')
    val_ylabel = load('valY_1024_10c')
    # 测试集
    test_xdata = load('testX_1024_10c')
    test_ylabel = load('testY_1024_10c')
​
    # 加载数据
    train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_xdata, train_ylabel),
                                   batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    val_loader = Data.DataLoader(dataset=Data.TensorDataset(val_xdata, val_ylabel),
                                 batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_xdata, test_ylabel),
                                  batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    return train_loader, val_loader, test_loader
​
batch_size = 32
# 加载数据
train_loader, val_loader, test_loader = dataloader(batch_size)

3.2 定义EMD-CNN-GRU并行分类网络模型

3.3 设置参数,训练模型

50个epoch,准确率将近95%,用EMD-CNN-GRU并行网络分类效果显著,CNN-GRU并行模型能够充分提取轴承故障信号的空间和时序特征,收敛速度快,性能优越,继续调参可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加CNN层数和隐藏层的维度,微调学习率;

  • 调整GRU层数和维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/257845.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SpringCloud02

1.在项目中&#xff0c;服务之间的调用是怎么实现的&#xff1f; 1.1基于RestTemplate和LoadBalanced注解&#xff1a; RestTemplate是Spring提供的用于访问RESTful服务的客户端。添加LoadBalanced注解后&#xff0c;RestTemplate会成为一个负载均衡的HTTP客户端&#xff0c;它…

云原生系列2-GitLab和Jenkins

1、GitLab类似github&#xff0c;是个私有仓库 1、GitLab安装&#xff0c;至少8G内存4核cpu # 查找Gitlab镜像 docker search gitlab/gitlab-ce # gitlab镜像拉取 docker pull gitlab/gitlab-ce # 查看镜像 docker images # 本机先建3个目录&#xff0c;为了gitlab容器通过挂…

【web安全】密码爆破讲解,以及burp的爆破功能使用方法

前言 菜某总结&#xff0c;欢迎指正错误进行补充 密码暴力破解原理 暴力破解实际就是疯狂的输入密码进行尝试登录&#xff0c;针对有的人喜欢用一些个人信息当做密码&#xff0c;有的人喜欢用一些很简单的低强度密码&#xff0c;我们就可以针对性的生成一个字典&#xff0c;…

轻量级购物小程序H5产品设计经典样例

主要是看到这个产品设计的不错值得借鉴特记录如下&#xff1a; 不过大多数购物app都大致相同&#xff0c;这个算是经典样例&#xff0c;几乎都可以复制&#xff0c;我第一次使用&#xff0c;感觉和顺畅。看上去产品是经过打磨的&#xff0c;布局非常好。内容也很丰富。支持异业…

【Linux】冯诺依曼体系结构与操作系统及其进程

> 作者简介&#xff1a;დ旧言~&#xff0c;目前大二&#xff0c;现在学习Java&#xff0c;c&#xff0c;c&#xff0c;Python等 > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;了解冯诺依曼体系结构与操作系统&#xff0c;掌握…

pytorch中nn.Sequential详解

1 nn.Sequential概述 1.1 nn.Sequential介绍 nn.Sequential是一个序列容器&#xff0c;用于搭建神经网络的模块被按照被传入构造器的顺序添加到容器中。除此之外&#xff0c;一个包含神经网络模块的OrderedDict也可以被传入nn.Sequential()容器中。利用nn.Sequential()搭建好…

AWS 知识二:AWS同一个VPC下的ubuntu实例通过ldapsearch命令查询目录用户信息

前言&#xff1a; 前提&#xff1a;需要完成我的AWS 知识一创建一个成功运行的目录。 主要两个重要&#xff1a;1.本地windows如何通过SSH的方式连接到Ubuntu实例 2.ldapsearch命令的构成 一 &#xff0c;启动一个新的Ubuntu实例 1.创建一个ubuntu实例 具体创建实例步骤我就不…

useConsole的封装,vue,react,htmlscript标签,通用

之前用了接近hack的方式实现了console的封装&#xff0c;目标是获取console.log函数的执行&#xff08;调用栈所在位置&#xff09;所在的代码行数。 例如以下代码&#xff0c;执行window.mylog(1)时候&#xff0c;console.log实际是在匿名的箭头函数()>{//这里执行的} con…

通过https协议访问Tomcat部署并使用Shiro认证的应用跳转登到录页时协议变为http的问题

问题描述&#xff1a; 在最近的一个项目中&#xff0c;有一个存在较久&#xff0c;并且只在内部城域网可访问的一个使用Shiro框架进行安全管理的Java应用&#xff0c;该应用部署在Tomcat服务器上。起初&#xff0c;应用程序可以通过HTTP协议访问&#xff0c;一切运行都没…

力扣面试题 16.19. 水域大小(java DFS解法)

Problem: 面试题 16.19. 水域大小 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 该问题可以归纳为一类遍历二维矩阵的题目&#xff0c;此类中的一部分题目可以利用DFS来解决&#xff0c;具体到本题目&#xff08;该题目可以的写法大体不变可参看前面几个题目&#…

XZ_iOS 之 M1 M2 M3的M系列芯片的Mac苹果电脑安装cocoapods

安装的前提&#xff0c;应用程序->终端->右键-显示简介->勾选 使用Rosetta打开&#xff0c;如下图&#xff0c;然后重启终端 安装的顺序如下&#xff1a;Homebrew->rvm->ruby->cocoapods 1、安装Homebrew /bin/bash -c "$(curl -fsSL https://raw.git…

淘宝类目信息API接口获取淘宝商品分类信息API调用说明(含APIkey密钥)

cat_get-获得淘宝分类详情 item_cat_get-获得淘宝商品类目 公共参数 名称类型必须描述keyString是调用key&#xff08;点此获取&#xff09;secretString是调用密钥api_nameString是API接口名称&#xff08;包括在请求地址中&#xff09;[item_search,item_get,item_search_…

【Mac】flutter项目集成高德定位SDK,获取key

一、获取调试版安全码SHA1 1.进入当前用户文件夹下的~/.android目录 cd ~/.android2.查看 debug.keystore ls3.运行 debug.keystore keytool -list -v -keystore debug.keystore这里报错&#xff1a; The operation couldn’t be completed. Unable to locate a Java Runt…

docker 安装及配置 nginx + tomcat(四):高可用

文章目录 1. 引言2. 高可用架构3. 实际步骤3.1 虚拟机新建系统3.2 安装 keepalived3.3 配置 keepalived3.4 启动 keepalived3.5 验证高可用3.5.1 查看当前效果3.5.2 模拟灾难 4 参考 1. 引言 前情提要&#xff1a; 《docker 安装及配置 nginx tomcat&#xff08;一&#xff0…

安全运营之安全加固和运维

安全运营是一个将技术、流程和人有机结合的复杂系统工程&#xff0c;通过对已有安全产品、工具和服务产出的数据进行有效的分析&#xff0c;持续输出价值&#xff0c;解决安全问题&#xff0c;以确保网络安全为最终目标。 安全加固和运维是网络安全运营中的两个重要方面。 安全…

在本地通过 k8s 部署一个 nginx 镜像

目标 目标:通过 deployment 启动一个 nginx,并且通过浏览器访问。 目的,熟悉并学习一下 k8s 的一些特性,毕竟看文档和实操是两码事。 本地部署 k8s 简单点,也不用 minikube 和 kubeadmin,直接通过 docker desktop 部署 k8s。 下载 docker desktop 下载完成后会自动…

Linux系统之部署Linux管理面板1Panel

一、介绍 1.1简介 1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。 1.2特点 快速建站&#xff1a;深度集成 Wordpress 和 Halo&#xff0c;域名绑定、SSL 证书配置等一键搞定&#xff1b; 高效管理&#xff1a;通过 Web 端轻松管理 Linux 服务器&#xff0c;包括应用管…

ios备忘录怎么导入华为 方法介绍

作为一个常常需要在不同设备间切换的人&#xff0c;我深知备忘录的重要性。那些突如其来的灵感、重要的会议提醒、甚至是生活中的琐碎小事&#xff0c;我们都习惯性地记录在备忘录里。但当我决定从iPhone转向华为时&#xff0c;一个问题困扰了我&#xff1a;如何将那些珍贵的备…

使用Axure的中继器的交互动作解决增删改查h

&#x1f3ac; 艳艳耶✌️&#xff1a;个人主页 &#x1f525; 个人专栏 &#xff1a;《产品经理如何画泳道图&流程图》 ⛺️ 越努力 &#xff0c;越幸运 目录 一、中继器的交互 1、什么是中继器的交互 2、Axure中继器的交互 3、如何使用中继器&#xff1f; 二…

CleanMyMac X 4 for Mac(Mac优化清理工具)v4.14.6中文破解版

CleanMyMac X for Mac中文破解版只需两个简单步骤就可以把系统里那些乱七八糟的无用文件统统清理掉&#xff0c;节省宝贵的磁盘空间。cleanmymac x个人认为X代表界面上的最大升级&#xff0c;功能方面有更多增加&#xff0c;与最新macOS系统更加兼容&#xff0c;流畅地与系统性…