大型语言模型:SBERT — Sentence-BERT

@slavahead

一、介绍

        Transformer 在 NLP 方面取得了进化进步,这已经不是什么秘密了。基于转换器,许多其他机器学习模型已经发展起来。其中之一是BERT,它主要由几个堆叠的变压器编码器组成。除了用于情感分析或问答等一系列不同的问题外,BERT在构建词嵌入(表示词的语义含义的数字向量)方面也越来越受欢迎。

        以嵌入的形式表示单词具有巨大的优势,因为机器学习算法不能处理原始文本,但可以对向量的向量进行操作。这允许通过使用欧几里得或余弦距离等标准度量来比较不同单词的相似性。

        问题在于,在实践中,我们经常需要构造嵌入,而不是为单个单词,而是为整个句子。但是,基本的 BERT 版本仅在单词级别上构建嵌入。因此,后来开发了几种类似 BERT 的方法来解决此问题,本文将对此进行讨论。通过逐步讨论它们,我们将达到称为 SBERT 的最先进的模型。

为了深入了解 SBERT 在后台的工作原理,建议您已经熟悉 BERT。如果没有,本系列文章的前一部分将对此进行详细解释。

二、Bert

首先,让我们提醒一下 BERT 如何处理信息。作为输入,它采用一个 [CLS] 令牌和两个句子,由一个特殊的 [SEP] 标记分隔。根据型号配置,多头注意力块会处理 12 或 24 次此信息。然后,将输出聚合并传递到简单的回归模型以获取最终标签。

BERT架构

有关 BERT 内部工作原理的更多信息,您可以参考本系列文章的前一部分:

2.1 交叉编码器架构

可以使用BERT来计算一对文档之间的相似性。考虑在大型集合中查找最相似的句子对的目标。为了解决这个问题,每个可能的对都被放在BERT模型中。这会导致推理过程中的二次复杂度。例如,处理 n = 10 000 个句子需要 n * (n — 1) / 2 = 49 995 000 次推理 BERT 计算,这实际上不可扩展。

2.2 其他方法

分析交叉编码器架构的低效率,为每个句子独立预计算嵌入似乎是合乎逻辑的。之后,我们可以直接计算所有文档对上所选的距离度量,这比将二次数的句子对提供给 BERT 要快得多。

不幸的是,这种方法在BERT中是不可能的:BERT的核心问题是,每次同时传递和处理两个句子时,很难获得仅独立表示单个句子的嵌入。

研究人员试图通过使用 [CLS] 标记嵌入的输出来消除这个问题,希望它包含足够的信息来表示一个句子。然而,事实证明,[CLS]对这项任务根本没有用,因为它最初是在BERT中预先训练的,用于下一个句子预测。

另一种方法是将单个句子传递给 BERT,然后对输出标记嵌入进行平均。然而,获得的结果甚至比简单地平均GLoVe嵌入还要糟糕。

推导独立的句子嵌入是BERT的主要问题之一。为了缓解这一方面,开发了SBERT。

三、SBERT

SBERT 引入了连体网络概念,这意味着每次两个句子通过同一个 BERT 模型独立传递。在讨论 SBERT 架构之前,让我们先看一下关于连体网络的一个微妙的注释:

大多数时候,在科学论文中,暹罗网络架构被描述为几个模型接收如此多的输入。实际上,可以将其视为具有相同配置和权重的单个模型,这些配置和权重在多个并行输入之间共享。每当为单个输入更新模型权重时,它们也会为其他输入同样更新。

左边是非连体(交叉编码器)架构,右边是连体(双编码器)架构。主要区别在于,在左侧,模型同时接受两个输入。在右侧,模型并行接受两个输入,因此两个输出不相互依赖。

回到 SBERT,在通过 BERT 传递句子后,将池化层应用于 BERT 嵌入以获得其低维表示:最初的 512 个 768 维向量被转换为单个 768 维向量。对于池化层,SBERT的作者建议选择均值池化层作为默认层,尽管他们也提到可以使用最大池化策略,或者简单地采用[CLS]令牌的输出。

当两个句子都通过池化层时,我们有两个 768 维向量 u 和 v。通过使用这两个向量,作者提出了三种优化不同目标的方法,这些方法将在下面讨论。

3.1 分类目标函数

        此问题的目标是在几个类之一中正确地对给定的一对句子进行分类。

        在生成嵌入 u 和 v 之后,研究人员发现生成从这两个源得出的另一个向量作为元素绝对差 |u-v| 是有用的。他们还尝试了其他特征工程技术,但这种技术显示出最好的结果。

        最后,将三个向量 uv 和 |u-v| 连接起来,乘以可训练的权重矩阵 W,并将乘法结果输入 softmax 分类器,该分类器输出对应于不同类的句子的归一化概率。交叉熵损失函数用于更新模型的权重。

        用于分类目标的 SBERT 架构。参数 n 代表嵌入的维度(默认为 768 作为 BERT base),而 k 表示标签的数量。

      NLI(自然语言推理)是用于解决该目标的最流行的现有问题之一,其中对于定义假设和前提的给定句子 A 和 B 对,有必要预测假设是真(蕴涵)、假(矛盾)还是未确定(中性)给定前提。对于此问题,推理过程与训练相同。

        如本文所述,SBERT模型最初是在SNLI和MultiNLI两个数据集上训练的,这两个数据集包含一百万个句子对,具有相应的标签蕴涵矛盾中性。之后,论文研究人员提到了有关SBERT调谐参数的细节:

“我们用一个 3 分 softmax 分类器目标函数对 SBERT 进行微调,用于一个时期。我们使用了 16 个批处理大小、学习率为 2e−5 的 Adam 优化器,以及超过 10% 的训练数据的线性学习率预热。我们默认的池化策略是卑鄙的。

3.2 回归目标函数

        在此公式中,在获得向量 u 和 v 后,它们之间的相似性分数由所选的相似性指标直接计算。将预测的相似度分数与真实值进行比较,并使用 MSE 损失函数更新模型。默认情况下,作者选择余弦相似度作为相似度指标。

回归目标的SBERT架构。参数 n 代表嵌入的维数(默认为 768 作为 BERT 基数)。

在推理过程中,可以通过以下两种方式之一使用此体系结构:

  • 通过给定的句子对,可以计算相似度分数。推理工作流与训练完全相同。
  • 对于给定的句子,可以提取其句子嵌入(在应用池化层之后)以供以后使用。当我们得到大量句子以计算它们之间的成对相似性分数时,这特别有用。通过仅通过 BERT 运行每个句子一次,我们提取了所有必要的句子嵌入。之后,我们可以直接计算所有向量之间选择的相似度指标(毫无疑问,它仍然需要二次比较,但同时我们避免了像以前那样使用 BERT 进行二次推理计算)。

3.3 三重目标函数

        三元组目标引入了三元组损失,该损失由三个句子计算,通常称为。假设锚句和肯定句彼此非常接近,而句和否定句则非常不同。在训练过程中,模型会评估对(锚,正)与对(锚,负)相比的接近程度。在数学上,以下损失函数最小化:

原始论文中的三元组损失函数。变量 sₐ、sp、sn 分别表示锚嵌入、正嵌入和负嵌入。符号 ||小号||是向量 s 的范数。参数 ε 称为边距。

边距 ε 确保肯定句比否定句更接近锚点至少ε。否则,损失将大于 0。默认情况下,在此公式中,作者选择欧几里得距离作为向量范数,参数 ε 设置为 1。

三元组 SBERT 架构与前两个架构的不同之处在于,该模型现在并行接受三个输入语句(而不是两个)。

回归目标的SBERT架构。参数 n 代表嵌入的维数(默认为 768 作为 BERT 基数)。

四、代码

SentenceTransformers 是一个最先进的 Python 库,用于构建句子嵌入。它包含用于不同任务的多个预训练模型。使用 SentenceTransformer 构建嵌入很简单,下面的代码片段中显示了一个示例。

使用 SentenceTransformer 构造嵌入

        然后,构造的嵌入可用于相似性比较。每个模型都是针对特定任务进行训练的,因此通过参考文档选择适当的相似度指标进行比较始终很重要。

五、结论

        我们已经介绍了一种用于获取句子嵌入的高级 NLP 模型。通过将 BERT 推理执行的二次次数减少到线性,SBERT 在保持高精度的同时实现了速度的大幅增长。

        为了最终理解这种差异有多显着,参考论文中描述的例子就足够了,研究人员试图在n = 10000个句子中找到最相似的一对。在现代 V100 GPU 上,使用 BERT 时此过程大约需要 65 小时,使用 SBERT 时只需 5 秒!这个例子表明 SBERT 是 NLP 的巨大进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/257732.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

国产ToolLLM的课代表---OpenBMB机构(清华NLP)旗下ToolBench的安装部署与运行(附各种填坑说明)

ToolBench项目可以理解为一个能直接提供训练ToolLLM的平台,该平台同时构建了ToolLLM的一个开源训练指令集。,该项目是OpenBMB机构(面壁智能与清华NLP联合成立)旗下的一款产品,OpenBMB机构名下还同时拥有另外一款明星产…

一种基于IWR6843雷达的跌倒检测系统的设计和实现(TI文档)

摘要 随着年龄增长,人体各项生理机能退化严重,老年人很容易发生跌倒,导致身体受到严重的伤害。近年来,随着国内人口老龄化越来越严重,主要针对老年人的跌倒检测系统正受到越来越多的关注。和常用的加速度传感器和视觉技…

vue el-date-picker中datetime类型对今天之后的日期包含时分禁用

vue el-date-picker中datetime类型对今天之后的日期包含时分禁用 目前对选择秒那一列未禁用 <template><div><el-date-pickerv-model"deactivateTime"type"datetime"format"yyyy-MM-dd HH:mm:ss"value-format"yyyy-MM-dd HH…

Unity 通过代码将一张大图切成多个小图的方法

在Unity 中要通过代码将一张贴图切割成多张小图&#xff0c;可以使用以下方法&#xff1a; /// <summary>/// 把一张图片切割成多张使用/// </summary>/// <param name"texture">原图</param>/// <param name"rows">切割的行…

SQL进阶理论篇(十三):数据库的查询优化器是什么?

文章目录 简介什么是查询优化器查询优化器的两种优化方式总结参考文献 简介 事务可以让数据库在增删改查的过程中&#xff0c;保证数据的正确性和安全性&#xff0c;而索引可以帮数据库提升数据的查找效率。查询优化器&#xff0c;则是帮助我们获取更高的SQL查询性能。 本节我…

持续集成交付CICD:K8S 自动化完成前端项目应用发布与回滚

目录 一、实验 1.环境 2.GitLab新建项目存放K8S部署文件 3.Jenkins手动测试前端项目CD 流水线代码&#xff08;下载部署文件&#xff09; 4. 将K8S master节点配置为jenkins从节点 5.K8S 手动回滚前端项目版本 6.Jenkins手动测试前端项目CD 流水线代码&#xff08;发布应…

空间转录组 多样本整合分析—stlearn

大家好&#xff0c;今天介绍一款空间转录组整合分析的python软件——stlearn。 如果你还不会安装&#xff0c;可以看下之前的推文&#xff0c;windows系统本地安装stlearn&#xff1a;本地安装jupyterlab&#xff0c;并创建conda小环境——以空间转录组细胞互作之stlearn安装为…

设计模式——0前言目录

1 设计模式介绍 应当站在产品经理的角度来学习设计模式 是软件设计中常见问题的典型解决方案&#xff0c;可用于解决代码中反复出现的设计问题 学习效果一般的原因在于自己没有站在产品经理的角度学习&#xff0c;仅仅是为了学习怎么实现&#xff0c;用什么算法实现。 分类&…

telnet的交互原理(wireshark分析)

telnet的交互原理&#xff08;wireshark篇&#xff09; telnet的协议类型是tcp&#xff0c;他的密钥用的是明文的&#xff0c;容易被捕获&#xff0c;所以后来的windows基本弃用了telnet服务端但依然保留了客户端。 下面是他的交互抓包&#xff1a; 这里面的前三条运用的是tc…

一种基于外观-运动语义表示一致性的视频异常检测框架 论文阅读

A VIDEO ANOMALY DETECTION FRAMEWORK BASED ON APPEARANCE-MOTION SEMANTICS REPRESENTATION CONSISTENCY 论文阅读 ABSTRACT1. INTRODUCTION2. PROPOSED METHOD3. EXPERIMENTAL RESULTS4. CONCLUSION阅读总结&#xff1a; 论文标题&#xff1a;A VIDEO ANOMALY DETECTION FRA…

【工作流Activiti】MyActivit的maven项目

1、Idea新建一个项目MyActivit的maven项目 2、安装插件 在 idea 里面&#xff0c;activiti 的插件叫 actiBPM&#xff0c;在插件库里面把它安装好&#xff0c;重启 idea 就行了。 3、 maven 项目中&#xff0c;并更改 pom.xml。pom 中依赖如下&#xff1a; <?xml version…

IntelliJ IDE 插件开发 | (三)消息通知与事件监听

系列文章 IntelliJ IDE 插件开发 |&#xff08;一&#xff09;快速入门IntelliJ IDE 插件开发 |&#xff08;二&#xff09;UI 界面与数据持久化IntelliJ IDE 插件开发 |&#xff08;三&#xff09;消息通知与事件监听 前言 在前两篇文章中讲解了关于插件开发的基础知识&…

【数据结构】二叉树的模拟实现

前言:前面我们学习了堆的模拟实现&#xff0c;今天我们来进一步学习二叉树&#xff0c;当然了内容肯定是越来越难的&#xff0c;各位我们一起努力&#xff01; &#x1f496; 博主CSDN主页:卫卫卫的个人主页 &#x1f49e; &#x1f449; 专栏分类:数据结构 &#x1f448; &…

14 v-model绑定输入框

概述 v-model用于实现双向数据绑定&#xff0c;使用v-model绑定输入框是Vue3中最常见的用法之一。 比如&#xff0c;在制作登录界面的时候&#xff0c;我们会使用v-model绑定用户名和密码&#xff0c;这里的用户名和密码都是输入框。 基本用法 我们创建src/components/Demo…

nodejs+vue+微信小程序+python+PHP影片数据爬取与数据分析-计算机毕业设计推荐

管理页面&#xff1a;管理员和用户都可以登录。通过输入账号和密码后&#xff0c;校验无误后方可进入对应的主界面&#xff0c;管理员可对用户使用的权限管理&#xff0c;以及对网站信息进行管理[9]。  影片数据爬取与数据分析分为两个部分&#xff0c;即管理员和用户。该系统…

C/C++编程中的算法实现技巧与案例分析

C/C编程语言因其高效、灵活和底层的特性&#xff0c;被广大开发者用于实现各种复杂算法。本文将通过10个具体的算法案例&#xff0c;详细探讨C/C在算法实现中的技巧和应用。 一、冒泡排序&#xff08;Bubble Sort&#xff09; 冒泡排序&#xff08;Bubble Sort&#xff09;是一…

[Toolschain cpp ros cmakelist python vscode] 记录写每次项目重复的设置和配置 不断更新

写在前面 用以前的设置&#xff0c;快速配置项目&#xff0c;以防长久不用忘记&#xff0c;部分资料在资源文件里还没有整理 outline cmakelist 复用vscode 找到头文件vscode debug现有代码直接关联远端gitros杂记repo 杂记glog杂记 cmakelist 复用 包含了根据系统路径找库…

各种不同语言分别整理的拿来开箱即用的8个开源免费单点登录(SSO)系统

各种不同语言分别整理的拿来开箱即用的8个开源免费单点登录&#xff08;SSO&#xff09;系统。 单点登录&#xff08;SSO&#xff09;是一个登录服务层&#xff0c;通过一次登录访问多个应用。使用SSO服务可以提高多系统使用的用户体验和安全性&#xff0c;用户不必记忆多个密…

学习Java第74天,Ajax简介

什么是ajax AJAX Asynchronous JavaScript and XML&#xff08;异步的 JavaScript 和 XML&#xff09;。 AJAX 不是新的编程语言&#xff0c;而是一种使用现有标准的新方法。 AJAX 最大的优点是在不重新加载整个页面的情况下&#xff0c;可以与服务器交换数据并更新部分网页…

限流原理与实践:固定窗口、滑动窗口、漏桶与令牌桶解析

方案一、固定窗口限流算法 这里我们通过一个 demo 来介绍固定窗口限流算法。 创建一个 FixWindowRateLimiterService 类。 Service public class FixWindowRateLimiterService {Resourceprivate StringRedisTemplate stringRedisTemplate;private static final DefaultRedisSc…