回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)

回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)

目录

    • 回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2

基本介绍

1.回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)。出图包括迭代曲线图、预测效果图等等。
2.matlab 版本要求2020b及以上版本 程序已调试好可以直接运行(数据直接在Excel中替换)
采用优化算法对随机配置网络SCN的尺度因子Lambdas和正则化系数r进行优化,以北方苍鹰优化算法为例.
3.直接替换Excel数据即可用,注释清晰,适合新手小白[火]
4.附赠示例数据,直接运行main文件一键出图[灯泡]评价指标包括:R2、MAE、MSE、MAPE、RMSE等,图很多.

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);



%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/257438.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端检测字符串中是否含有特殊字符,并返回该特殊字符

一、判断字符串中是否含有特殊字符 const hasSpecicalCharacter (str) > {var regex /[!#$%^&*(),.?":{}|<>]/return regex.test(str) } //含有特殊字符返回true, 没有特殊字符返回false 二、判断字符串中是否含有特殊字符&#xff0c;并返回该特殊字符…

作业--day32

机械臂 #include <myhead.h>#define PORT 8888 #define IP "192.168.125.59"int main(int argc, const char *argv[]) {int sfd socket(AF_INET, SOCK_STREAM, 0);if(sfd -1){perror("socket error");return -1;}int reuse -1;if(setsockopt(sfd…

C# 调用腾讯混元大模型

写在前面 今天用C#调用了一下腾讯混元大模型&#xff0c;调用代码贴一下&#xff0c;具体的效果等深入使用后再来评价。 GitHub - TencentCloud/tencentcloud-sdk-dotnet: Tencent Cloud API 3.0 SDK for .NET 腾讯混元大模型简介_腾讯混元大模型购买指南_腾讯混元大模型操作…

等保测评主要保护哪些方面的安全?

等保测评是经公安部认证的具有资质的测评机构&#xff0c;依据国家信息安全等级保护规范规定&#xff0c;受有关单位委托&#xff0c;按照有关管理规范和技术标准&#xff0c;对信息系统安全等级保护状况进行检测评估的活动。那么企业做等保“保”的是什么呢&#xff1f; 等保主…

直播江湖:东方甄选与董宇辉的权力游戏

出品| 大力财经 文 | 魏力 近期&#xff0c;围绕东方甄选的小作文事件引起了广泛关注&#xff0c;有人将其解读为一场巧妙策划的事件营销&#xff0c;然而&#xff0c;舆情的不可控性使得事态逐渐演变为一场复杂的利益博弈。 东方甄选与董宇辉的“蜜月期”可以说是双方互相成就…

直流电、交流电和发电机、接地、变压器

直流电 此节内容主要摘录自&#xff1a;图文详解直流电与直流电路基本知识 直流电是指电流方向不随时间作周期性变化&#xff0c;由正极流向负极&#xff0c;但电流的大小可能会变化的电流。直流电可以分为稳定&#xff08;恒定&#xff09;直流和脉动直流两种&#xff0c;如下…

Re解析(正则表达式解析)

正则表达式基础 元字符 B站教学视频&#xff1a; 正则表达式元字符基本使用 量词 贪婪匹配和惰性匹配 惰性匹配如下两张图&#xff0c;而 .* 就表示贪婪匹配&#xff0c;即尽可能多的匹配到符合的字符串&#xff0c;如果使用贪婪匹配&#xff0c;那么结果就是图中的情况三 p…

ZKP Commitment (1)

MIT IAP 2023 Modern Zero Knowledge Cryptography课程笔记 Lecture 5: Commitment 1 (Ying Tong Lai) Overview: Modern SNARK IOP: Interactive Oracle ProofCommitment SchemeIOP “compiled by” the commitment scheme to get a non-interactive proofAn IOP is “inform…

【重点】【前缀树|字典树】208.实现Trie(前缀树)

题目 前缀树介绍&#xff1a;https://blog.csdn.net/DeveloperFire/article/details/128861092 什么是前缀树 在计算机科学中&#xff0c;trie&#xff0c;又称前缀树或字典树&#xff0c;是一种有序树&#xff0c;用于保存关联数组&#xff0c;其中的键通常是字符串。与二叉查…

windows10-tdengine的安装及使用

win10-tdengine的安装及使用 一、下载及安装配置1.1 下载安装1.2 配置 二、启动及关闭服务2.1 启动tdengine服务2.2 关闭tdengine服务2.2 开机自启动配置 四、可视化工具&#xff08;GUI&#xff09;4.1 下载4.2 安装 五、TDengine 命令行&#xff08;CLI&#xff09;5.1 进入命…

st.pp.normalize_total(data) # NOTE: no log1p

这段代码在使用 stlearn 包中的 st.pp.normalize_total 函数对数据进行总体计数标准化。标准化后&#xff0c;每个细胞的总计数都将等于 median(total_counts)。 NOTE: no log1p 这行注释表示在标准化后&#xff0c;数据不会进行 log1p 转换。log1p 转换将每个计数值增加 1&a…

【每日一题】1901. 寻找峰值 II-2023.12.19

题目&#xff1a; 1901. 寻找峰值 II 一个 2D 网格中的 峰值 是指那些 严格大于 其相邻格子(上、下、左、右)的元素。 给你一个 从 0 开始编号 的 m x n 矩阵 mat &#xff0c;其中任意两个相邻格子的值都 不相同 。找出 任意一个 峰值 mat[i][j] 并 返回其位置 [i,j] 。 你…

Java对象结构

Java 对象(Object 实例)结构包括三部分:对象头、对象体、对齐字节。 Object的三个部分 对象头包括三个字段&#xff0c;第一个字段叫做 Mark Word(标记字)&#xff0c;用于存储自身运行时的数据 例如 GC 标志位、哈希码、锁状态等信息。 第二个字段叫做 Class Pointer(类对象…

CEC2013(python):五种算法(HHO、WOA、GWO、DBO、PSO)求解CEC2013(python代码)

一、五种算法简介 1、哈里斯鹰优化算法HHO 2、鲸鱼优化算法WOA 3、灰狼优化算法GWO 4、蜣螂优化算法DBO 5、粒子群优化算法PSO 二、5种算法求解CEC2013 &#xff08;1&#xff09;CEC2013简介 参考文献&#xff1a; [1] Liang J J , Qu B Y , Suganthan P N , et al. P…

设计模式(三)-结构型模式(5)-外观模式

一、为何需要外观模式&#xff08;Facade&#xff09;? 要实现一个大功能&#xff0c;我们需要将它拆分成多个子系统。然后每个子系统所实现的功能&#xff0c;就由一个称为外观的高层功能模块来调用。这种设计方式就称为外观模式。该模式在开发时常常被使用过&#xff0c;所…

翻译: LLMs大语言模型影响到高工资的的白领知识工作者 加速各行各业的自动化潜力 Automation potential across sectors

我们已经探讨了生成人工智能可能对您的工作有用&#xff0c;也讨论了分析其对企业的影响。现在&#xff0c;让我们拉远镜头&#xff0c;看看它对不同公司的工作角色以及对不同行业部门的影响。这个视频的结果对特定企业可能不那么直接可行&#xff0c;但也许这会帮助您思考并尝…

文件包含的提升刷题

上一篇文章&#xff1a;一篇文章带你入门文件包含-CSDN博客 已经开始入门了文件包含&#xff0c;那现在开始拔高提升刷题&#xff01; 1. 拿到题目后啥也没有&#xff0c;所以也不知道要读取啥文件&#xff0c;那就查看源代码。 直接看if的条件就可以知道一定要设置cookie&a…

【C++】模板--函数模板.类模板

目录 一 函数模板 1 概念 2 函数模板格式 3 函数模板的原理 4 模板参数的匹配原则 1 多个模板参数 2 非模板函数和同名的函数模板 5 函数模板实例化 1. 隐式实例化 2. 显式实例化 二 类模板 1 类模板定义格式 2 类模板实例化 3 细节 一 函数模板 1 概念 函数模…

Shell三剑客:sed(示例)

一、删除配置文件中#号注释 [rootlocalhost ~]# sed -ri /^#/d /etc/vsftpd/vsftpd.conf [rootlocalhost ~]# vim /etc/vsftpd/vsftpd.conf #查看 二、 修改文件 [rootlocalhost ~]# sed -ri $a chroot_local_userYES /etc/vsftpd/vsftpd.conf [rootlocalhost ~]# sed …

Markdown 使用笔记

文章目录 Part.I IntroductionChap.I 传送门 Part.II 语法Chap.I 基础语法Chap.II 字体控制Chap.III 超链接 & 脚注Chap.IV 一些小妙招 Part.III 在线 Markdown 编辑工具Chap.I StackEditChap.II HedgeDoc Reference Part.I Introduction Markdown是一种轻量级标记语言&am…