yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)

在这里插入图片描述

要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:

单目测距算法

  • 单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。
  • 基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。

单目测距代码

单目测距涉及到坐标转换,代码如下:

def convert_2D_to_3D(point2D, R, t, IntrinsicMatrix, K, P, f, principal_point, height):
    """

    例如:像素坐标转世界坐标
    Args:
        point2D: 像素坐标点
        R: 旋转矩阵
        t: 平移矩阵
        IntrinsicMatrix:内参矩阵
        K:径向畸变
        P:切向畸变
        f:焦距
        principal_point:主点
        height:Z_w

    Returns:返回世界坐标系点,point3D_no_correct, point3D_yes_correct

    """
    point3D_no_correct = []
    point3D_yes_correct = []


    ##[(u1,v1),
   #   (u2,v2)]

    point2D = (np.array(point2D, dtype='float32'))

在YOLOv5中添加单目测距功能的一种方法是,在训练集上收集带有物体标注和深度信息的数据。然后,可以使用深度学习模型(如卷积神经网络)将输入图像映射到深度图。训练完成后,您可以使用该模型来估计图像中物体的距离。
在这里插入图片描述

差帧算法(Frame Difference Algorithm)

  • 差帧算法是一种基于视频序列的帧间差异来计算物体速度的方法。它基于一个简单的假设:相邻帧之间物体的位置变化越大,物体的速度越快。
  • 差帧算法是一种基于视频序列的帧间差异来计算物体速度的方法。其原理是计算物体在相邻两帧之间的位置差异,然后通过时间间隔来计算物体的速度。

假设物体在第t帧和第(t-1)帧中的位置分别为pt和pt-1,则可以使用欧氏距离或其他相似度度量方法来计算它们之间的距离:

d = ||pt - pt-1||

其中||.||表示欧氏距离。然后,通过时间间隔Δt来计算物体的平均速度v:

v = d / Δt

其中,Δt表示第t帧和第(t-1)帧之间的时间间隔。在实际应用中,可以根据需要对速度进行平滑处理,例如使用移动平均或卡尔曼滤波等方法。

测速代码

以下是一个简单的差帧算法代码示例,用于计算物体在视频序列中的速度:

```python
import cv2
import numpy as np

# 读取视频文件
cap = cv2.VideoCapture('video.mp4')

# 初始化参数
prev_frame = None
prev_position = None
fps = cap.get(cv2.CAP_PROP_FPS)  # 视频帧率
speeds = []  # 存储速度值

while cap.isOpened():
    ret, frame = cap.read()

    if not ret:
        break

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    if prev_frame is not None:
        # 计算当前帧和前一帧之间的位置差异
        flow = cv2.calcOpticalFlowFarneback(prev_frame, gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)

        # 提取运动向量的x和y分量
        vx = flow[..., 0]
        vy = flow[..., 1]

        # 计算位置差异的欧氏距离
        distance = np.sqrt(np.square(vx) + np.square(vy))

        # 计算速度
        speed = np.mean(distance) * fps

        speeds.append(speed)

        # 可选:可视化结果
        flow_vis = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        flow_vis[..., 0] = np.arctan2(vy, vx) * (180 / np.pi / 2)
        flow_vis[..., 2] = cv2.normalize(distance, None, 0, 255, cv2.NORM_MINMAX)
        flow_vis = cv2.cvtColor(flow_vis, cv2.COLOR_HSV2BGR)

        cv2.imshow('Flow Visualization', flow_vis)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    prev_frame = gray

cap.release()
cv2.destroyAllWindows()

# 打印速度结果
print("速度列表:", speeds)

该代码使用OpenCV库中的`函数来计算相邻帧之间的光流向量,并通过欧氏距离计算位置差异。然后,通过视频的帧率计算速度,并将速度存储在一个列表中。你可以根据自己的需求对速度进行进一步处理或可视化。请注意,这只是一个简单的示例,实际应用中可能需要根据具体情况进行调整和改进。

追踪

而DeepSORT是一种目标跟踪算法,常与YOLOv5结合使用。

DeepSORT(Deep Learning + SORT)是一种基于深度学习和卡尔曼滤波的目标跟踪算法。它通过结合YOLOv5等目标检测器的输出和SORT(Simple Online and Realtime Tracking)算法的轨迹管理,实现对视频中目标的准确跟踪。

DeepSORT的主要特点如下:

  • 多目标跟踪:DeepSORT能够同时跟踪多个目标,并为每个目标生成唯一的ID,以便在不同帧之间进行关联。
  • 深度特征嵌入:DeepSORT使用深度学习模型(如ResNet)提取目标的特征向量,将其用于目标的身份验证和关联。
  • 卡尔曼滤波:DeepSORT使用卡尔曼滤波器来预测目标的位置和速度,并通过将检测和预测结果进行关联,提供平滑的目标轨迹。
  • 数据关联:DeepSORT使用匈牙利算法将当前帧的检测结果与上一帧的跟踪结果进行关联,以最大化目标标识的一致性

通过将YOLOv5和DeepSORT结合使用,可以实现准确的目标检测和连续的目标跟踪,从而在视频监控、自动驾驶、智能机器人等领域提供更加全面和高效的解决方案。这种结合能够在实时场景下处理大量目标,并为每个目标提供连续的轨迹信息,具有广泛的应用前景。

追踪代码

以下是一个简化的卡尔曼滤波算法的代码示例:

import numpy as np

class KalmanFilter:
    def __init__(self, state_dim, measurement_dim):
        # 初始化状态转移矩阵
        self.F = np.eye(state_dim)

        # 初始化测量矩阵
        self.H = np.eye(measurement_dim, state_dim)

        # 初始化状态估计
        self.x = np.zeros((state_dim, 1))

        # 初始化状态协方差矩阵
        self.P = np.eye(state_dim)

        # 初始化过程噪声协方差矩阵
        self.Q = np.eye(state_dim)

        # 初始化测量噪声协方差矩阵
        self.R = np.eye(measurement_dim)

    def predict(self):
        # 预测状态
        self.x = np.dot(self.F, self.x)
        # 预测状态协方差
        self.P = np.dot(np.dot(self.F, self.P), self.F.T) + self.Q

    def update(self, z):
        # 计算预测残差
        y = z - np.dot(self.H, self.x)
        # 计算预测残差协方差
        S = np.dot(np.dot(self.H, self.P), self.H.T) + self.R
        # 计算卡尔曼增益
        K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S))
        # 更新状态估计
        self.x = self.x + np.dot(K, y)
        # 更新状态协方差
        self.P = np.dot((np.eye(self.x.shape[0]) - np.dot(K, self.H)), self.P)

# 示例用法
# 创建卡尔曼滤波器对象
kalman_filter = KalmanFilter(state_dim=2, measurement_dim=1)

# 模拟测量值
measurements = [1.2, 1.7, 2.5, 3.6]

# 进行预测和更新
for z in measurements:
    kalman_filter.predict()
    kalman_filter.update(np.array([[z]]))

    # 打印更新后的状态估计值
    print(kalman_filter.x)

上述代码是一个简单的一维卡尔曼滤波器的实现。您可以根据需要调整状态维度 state_dim 和测量维度 measurement_dim,并设置相应的状态转移矩阵 F、测量矩阵 H、过程噪声协方差矩阵 Q 和测量噪声协方差矩阵 R。然后,通过 predict() 方法进行预测,通过 update() 方法进行更新。

请注意,卡尔曼滤波算法的具体实现可能因应用场景而有所不同。这里提供的代码仅用于展示基本的卡尔曼滤波器结构和操作步骤,需要根据具体需求进行相应的调整和扩展。

总结

具体实现上述功能的步骤如下:
在这里插入图片描述

单目测距:

  • 收集训练数据集,包含物体标注和对应的深度信息。
    构建深度学习模型,例如使用卷积神经网络(如ResNet、UNet等)进行图像到深度图的映射。
  • 使用收集的数据集进行模型训练,优化深度学习模型。
  • 在YOLOv5中添加单目测距功能时,加载训练好的深度学习模型,并在检测到对象时,使用该模型估计距离。

差帧算法:

  • 对视频序列进行物体检测和跟踪,获取物体在连续帧中的位置信息。
  • 计算相邻帧之间物体位置的差异,可以使用欧氏距离或其他相似度度量方法。
  • qq 1309399183
  • 将差异除以时间间隔,得到物体的平均速度。

追踪算法

除了DeepSORT,还有一些其他常见的目标追踪算法:

  1. SORT(Simple Online and Realtime Tracking):一个简单但高效的在线实时目标追踪算法,通过卡尔曼滤波器和匈牙利算法实现目标匹配。

  2. MOSSE(Minimum Output Sum of Squared Error):一种基于相关滤波器的目标追踪算法,使用最小输出平方误差来更新模板。

  3. KCF(Kernelized Correlation Filter):一种基于相关滤波器的目标追踪算法,使用核函数来建立目标与模板之间的关系。

  4. TLD(Tracking-Learning-Detection):一种结合了目标检测和跟踪的方法,使用学习算法来提高目标模型的准确性。

  5. ECO(Efficient Convolution Operators):一种基于傅里叶变换的目标追踪算法,能够快速计算目标模板与搜索区域之间的相似度。

  6. C-COT(Context-aware Correlation Tracking):一种基于上下文感知的目标追踪算法,使用上下文信息来提高目标模板的鲁棒性。

  7. StapleTrack:一种基于稀疏表示的目标追踪算法,使用稀疏编码来提取目标的特征表示。

这些追踪算法各有优缺点,具体应用时需要根据实际需求选择合适的算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/257001.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言--字符函数与字符串函数

大家好,我是残念,希望在你看完之后,能对你有所帮助,有什么不足请指正!共同学习交流 本文由残念ing 原创CSDN首发,如需要转载请通知 个人主页:残念ing-CSDN博客,欢迎各位→点赞&#…

leetcode---76. 最小覆盖子串 [C++/滑动窗口+哈希表]

原题:76. 最小覆盖子串 - 力扣(LeetCode) 题目解析: 此题在这道题的基础上进行理解会更简单 leetcode --- 30. 串联所有单词的子串[C 滑动窗口/双指针]-CSDN博客 本题要求在s字符串中找到含有t字符串所有字符的最短子串。 也就是…

【lesson17】MySQL表的基本操作--表去重、聚合函数和group by

文章目录 MySQL表的基本操作介绍插入结果查询(表去重)建表插入数据操作 聚合函数建表插入数据操作 group by(分组)建表插入数据操作 MySQL表的基本操作介绍 CRUD : Create(创建), Retrieve(读取),Update(更新)&#x…

XAgent的部署及运行

源代码clone git clone config 文件的修改 在XAgent源码目录,运行 vi .env, 修改以下配置条目 CONFIG_FILEassets/gpt-3.5-turbo_config.ymlpython环境 python >3.10 安装conda,通过conda激活python3.10的环境 wget https://repo.a…

josef约瑟 跳合位、电源监视继电器 HRTH-Y-2H2D DC220V

系列型号: HRTH-Y-2H2D-X-T跳位监视、合位监视、电源监控继电器; HRTH-Y-2Z-X-T跳位监视、合位监视、电源监控继电器; HRTH-Y-2H-X-T跳位监视、合位监视、电源监控继电器; HRTH-J-2H2D-X-T跳位监视、合位监视、电源监控继电器…

Axure中继器的基本使用

介绍中继器 在 Axure 中,中继器是一种交互设计元素,用于在不同页面之间传递数据或触发特定的事件。它可以帮助模拟真实的用户交互流程和页面之间的传递逻辑,继承关系用于描述两个元件之间的父子关系。通过使用继承关系,您可以创建…

Linux的SSH(远程登录)

SSH定义: SSH(Secure Shell 的缩写)是一种网络协议,用于加密两台计算机之间的通信,并且支持各种身份验证机制。 实务中,它主要用于保证远程登录和远程通信的安全,任何网络服务都可以用这个协议…

深度学习笔记_7经典网络模型LSTM解决FashionMNIST分类问题

1、 调用模型库,定义参数,做数据预处理 import numpy as np import torch from torchvision.datasets import FashionMNIST import torchvision.transforms as transforms from torch.utils.data import DataLoader import torch.nn.functional as F im…

自定义 spring-boot组件自动注入starter

1&#xff1a;创建maven项目 2&#xff1a;pom文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocati…

stm32与Freertos入门(二)移植FreeRTOS到STM32中

简介 注意&#xff1a;FreeRTOS并不是实时操作系统&#xff0c;而是分时复用的&#xff0c;只不过切换频率很快&#xff0c;感觉上是同时在工作。本次使用的单片机型号为STM32F103C8T6,通过CubeMX快速移植。 一、CubeMX快速移植 1、选择芯片 打开CubeMX软件&#xff0c;进行…

轻量封装WebGPU渲染系统示例<53>- 多盏灯灯光照在地面的效果

WebGPU实时渲染实现模拟多盏灯的灯光照在地面的效果灯光效果 。 当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/material/src/voxgpu/sample/MultiLightsTest.ts 当前示例运行效果: 此示例基于此渲染系统实现&#xff0c;当前示例TypeScript源…

Ribbon负载均衡原理、策略、饥饿加载

Ribbon负载均衡原理、策略、饥饿加载 MapperScan("cn.itcast.order.mapper") SpringBootApplication public class OrderApplication {public static void main(String[] args) {SpringApplication.run(OrderApplication.class, args);}/*** 完成创建RestTemplate&am…

虾皮 选品:如何在虾皮平台上进行有效的选品?

在虾皮&#xff08;Shopee&#xff09;这个跨境电商平台上&#xff0c;选品对于卖家来说至关重要。选品决定了店铺的销售额和竞争力。为了帮助卖家进行选品&#xff0c;虾皮平台提供了一些免费的选品工具&#xff0c;如知虾。同时&#xff0c;还有一些第三方选品工具&#xff0…

支持可视化提取变量,Apipost配置变量不要太简单

在调试接口时我们需要将响应结果中的某个字段配置为环境变量在其他接口中引用&#xff0c;之前在Apipost中需要配置脚本而在最近Apipost后执行操作中可以进行可视化的断言和变量提取&#xff0c;无需配置繁琐脚本。 这里我们在登录接口下配置一条Token环境变量&#xff0c;在后…

去面试性能测试工程师必问的问题,

性能测试的三个核心原理是什么&#xff1f; 1.基于协议。性能测试的对象是网络分布式架构的软件&#xff0c;而网络分布式架构的核心是网络协议 2.多线程。人的大脑是单线程的&#xff0c;电脑的cpu是多线程的。性能测试就是利用多线程的技术模拟多用户去负载 3.模拟真实场景。…

外卖系统海外版:技术智能引领全球美食新潮流

随着全球数字化浪潮的推动&#xff0c;外卖系统海外版不仅是食客们品味美食的便捷通道&#xff0c;更是技术智能在美食领域的引领者。本文将深入剖析其背后的技术实现&#xff0c;揭开代码带来的美食革新。 多语言支持&#xff1a;构建全球美食沟通桥梁 def multilingual_su…

机器人也能干的更好:RPA技术的优势和应用场景

RPA是什么&#xff1f; 机器人流程自动化RPA&#xff08;Robotic Process Automation&#xff09;是一种自动化技术&#xff0c;它使用软件机器人来高效完成重复且有逻辑性的工作。近年来&#xff0c;随着人工智能和自动化技术的不断发展和普及&#xff0c;RPA已经成为企业提高…

双指针——找到字符串中的所有字母异位词

https://leetcode.cn/problems/find-all-anagrams-in-a-string/description/?envTypestudy-plan-v2&envIdtop-100-liked 双指针&#xff0c;每次都统计出来p长度的滑动窗口里的数字,拿Arrays.equals进行对比,然后滑动一小格&#xff0c;减1加1继续比对即可。 class Solut…

2023年12月最新软件测试面试题(带答案)

1. 请自我介绍一下(需简单清楚的表述自已的基本情况&#xff0c;在这过程中要展现出自信&#xff0c;对工作有激情&#xff0c;上进&#xff0c;好学) 面试官您好&#xff0c;我叫###&#xff0c;今年26岁&#xff0c;来自江西九江&#xff0c;就读专业是电子商务&#xff0c;毕…