基于YOLOv8深度学习的智能小麦害虫检测识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:智能小麦害虫检测与识别对于农业领域有着举足轻重的意义。它有助于农民及时了解田间小麦害虫的种类与分布情况,从而做出迅速有效的决策来防治害虫,最小化作物产量损失和质量下降的风险。本文基于YOLOv8深度学习框架,通过633张图片,训练了一个进行智能小麦害虫检测识别的目标检测模型。并基于此模型开发了一款带UI界面的智能小麦害虫检测识别系统,可用于实时检测场景中的小麦害虫类别,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

小麦害虫检测与识别对于农业领域有着举足轻重的意义。主要表现在以下几个方面:

它有助于农民及时了解田间小麦害虫的种类与分布情况,从而做出迅速有效的决策来防治害虫,最小化作物产量损失和质量下降的风险。通过精确识别害虫种类,可以采用更为针对性的防控措施,包括选择合适的农药和调整施药量。这样不仅提高了农药的使用效率,同时减少了对环境的污染和对人体的潜在健康风险。
此外,智能小麦害虫检测与识别系统可以实时监控大面积的作物,为精准农业和智能化管理提供数据支撑。它在经济作物健康管理、农业灾害评估、以及农业科学研究等场景中具有广泛应用。比如,在智能农业领域,该系统可以集成到无人机或自动化巡检机器人中,对大面积田地进行高效率的监测,提供大数据支持智能决策系统。在科研领域,研究人员可以利用该系统收集害虫发生和繁殖规律的数据,对害虫防控技术进行研究和优化。
综上所述,智能小麦害虫检测与识别系统对于保障粮食安全、提升农业生产效率、促进使用环境友好型的农业实践以及推进现代农业技术的发展具有非常重要的作用。

博主通过搜集不同种类的小麦害虫的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的智能小麦害虫检测识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行9种小麦害虫的检测与识别,分别为:['英国谷蚜', '绿盲椿象', '鸟樱桃蚜虫', '小麦花蚜', '蓟马', '长腿蜘蛛螨', '小麦百合蓟马', '小麦锯螟', '玉米天蛾'];
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于不同小麦害虫的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含633张图片,其中训练集包含506张图片验证集包含127张图片,部分图像及标注如下图所示。
在这里插入图片描述

在这里插入图片描述
图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入WheatInsectData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\WheatInsectDetection\datasets\WheatInsectData\train
val: E:\MyCVProgram\WheatInsectDetection\datasets\WheatInsectData\val

nc: 9
names: ['english grain aphid', 'green bug', 'bird cherry-oataphid', 'wheat blossom midge', 'penthaleus major', 'longlegged spider mite', 'wheat phloeothrips', 'wheat sawfly', 'cerodonta denticornis']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/WheatInsectData/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述
我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5平均值为0.735,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/IP027000305.jpg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)


# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款智能小麦害虫检测识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的智能小麦害虫检测识别系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/256514.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MYSQL中使用IN,在xml文件中怎么写?

MYSQL: Spring中: mysql中IN后边的集合,在后端中使用集合代替,其他的没有什么注意的,还需要了解foreach 语法即可。

ros2 学习03-开发工具vscode 插件配置

VSCode插件配置 为了便于后续ROS2的开发与调试,我们还可以安装一系列插件,无限扩展VSCode的功能。 中文语言包 Python插件 C插件 CMake插件 vscode-icons ROS插件 Msg Language Support Visual Studio IntelliCode URDF Markdown All in One VSCode支持的…

Linux服务器修改系统时间

一、修改时区 1、查看系统当前时间 date 2、删除当前时间: #删除当前默认时区 rm -rf /etc/localtime 3、 将当前时区修改为上海时区 #修改默认时区为上海 ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime 二、修改系统时间 1、查看系统当前时间 d…

2018年第七届数学建模国际赛小美赛D题速度扼杀爱情解题全过程文档及程序

2018年第七届数学建模国际赛小美赛 D题 速度扼杀爱情 原题再现: 在网上约会的时代,有比鱼更多的浪漫选择,好吧,你知道的。例如,在命名恰当的网站Plenty of Fish上,你可以仔细查看数百或数千名潜在伴侣的档…

Web前端-HTML(简介)

文章目录 1. HTML1.1概述1.2 HTML骨架标签1.3 HTML元素标签及分类1.4 HTML标签关系 2. 代码开发工具&#xff08;书写代码&#xff09;3. 文档类型<!DOCTYPE>4. 页面语言lang5. 字符集 1. HTML 1.1概述 HTML 指的是超文本标记语言 (Hyper Text Markup Language)&#x…

STM32 CAN多节点组网项目实操 挖坑与填坑记录2

系列文章&#xff0c;持续探索CAN多节点通讯&#xff0c; 上一篇文章链接&#xff1a; STM32 CAN多节点组网项目实操 挖坑与填坑记录-CSDN博客文章浏览阅读120次。CAN线性组网项目开发过程中遇到的数据丢包问题&#xff0c;并尝试解决的记录和推测分析。开发了一个多节点线性…

掌握 RPC 接口测试:一篇详尽的接口测试手册

RPC 是什么&#xff1f; 远程过程调用协议&#xff08;RPC&#xff09;是一种技术&#xff0c;它允许在不同的机器上执行函数&#xff0c;就好像这些函数是本地调用一样。简单地说&#xff0c;客户端系统透明地从网络上的远程服务器软件请求服务&#xff0c;而无需理解复杂的网…

光敏材料研究和测试太阳光模拟器

概述 太阳光模拟器通常采用强光源和光学系统来产生和调节光线&#xff0c;以模拟太阳光的强度、光谱和方向&#xff0c;能提供24H不间断光源。模拟器可根据不同时间、地点和季节的太阳光照射条件来进行调整。广泛应用于整车全光谱阳光模拟测试、气体VOC&#xff08;挥发性有机…

Unix进程间通信之简介-总体概述和引子

目录标题 0. 前言1. 概述2. 进程、线程与信息共享3. IPC对象的持续性4. 名字空间5. fork、exec和exit对IPC对象的影响6. 出错处理&#xff1a; 包裹函数7. Unix标准8. 小结 0. 前言 进程间通信这块是学习linux-c编程的关键&#xff0c; 这篇为后续进程间通信技术的引子篇&#…

【 USRP安装教程】MATLAB 2023B

步骤 matlabdocusrp驱动包 doc 安装包内容列表 双击“R2023b_Doc_Windows.iso” 打开cmd 查看盘符 切换盘符 因为是F盘&#xff0c;所以cmd输入&#xff1a;“F:” F:进入可安装界面 cd F:\bin\win64安装离线文档库 .\mpm install-doc --matlabroot"C:\MATLAB\R202…

普冉(PUYA)单片机开发笔记(11): I2C通信-配置主从收发

概述 在上一篇《普冉&#xff08;PUYA&#xff09;单片机开发笔记(10): I2C通信-配置从机-CSDN博客》配置了 PY32F003 的 I2C 从机一侧&#xff0c;今天配置主机&#xff0c;并实现主-从机之间的报文收发。 为了完成这个实验&#xff0c;需要两块 PY32F003F18P 的开发板&…

git 删除仓库中多余的文件或者文件夹

问题 在项目开发测试阶段&#xff0c;将无意间将本地敏感的、或无用的文件或目录不小心提交到远程仓库了的问题。 解决方案 第一步&#xff1a;同步代码 先pull远程代码&#xff0c;保持同步。 git pull 第二步&#xff1a;删除文件 // 删除单个文件git rm 文件名 --cached/…

opencv 入门一(显示一张图片)

头文件添加如下&#xff1a; 库目录添加如下&#xff1a; 依赖的库如下&#xff1a; #include <iostream> #include "opencv2/opencv.hpp" int main(int argc,char ** argv) { cv::Mat img cv::imread(argv[1], -1); if (img.empty()) return -1; …

[C++从入门到精通] 14.虚函数、纯虚函数和虚析构(virtual)

&#x1f4e2;博客主页&#xff1a;https://blog.csdn.net/weixin_43197380&#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;本文由 Loewen丶原创&#xff0c;首发于 CSDN&#xff0c;转载注明出处&#x1f649;&…

APS54085 高辉度调光降压恒流芯片 PWM 线性调光 车灯IC

产品描述 APS54085 是一款 PWM 工作模式,简单、内置功率 MOS 管&#xff0c;适用于 5-100V输入的高精度降压 LED 恒流驱动芯片。电流2.0A。APS54085 可实现线性调光和 PWM 调光&#xff0c;线性调光有效电压范围 0.52-2.55V.PWM 调光频率范围 100HZ-30KHZ。APS54085 工作频率可…

MATLAB - Gazebo 仿真环境

系列文章目录 前言 机器人系统工具箱&#xff08;Robotics System Toolbox™&#xff09;为使用 Gazebo 模拟器可视化的模拟环境提供了一个界面。通过 Gazebo&#xff0c;您可以在真实模拟的物理场景中使用机器人进行测试和实验&#xff0c;并获得高质量的图形。 Gazebo 可在…

鸿蒙4.0核心技术-WebGL开发

场景介绍 WebGL主要帮助开发者在前端开发中完成图形图像的相关处理&#xff0c;比如绘制彩色图形等。 接口说明 表1 WebGL主要接口列表 接口名描述canvas.getContext获取canvas对象上下文。webgl.createBuffer(): WebGLBuffernullwebgl.bindBuffer(target: GLenum, buffer: …

打开VScode时不打开上次使用的文件夹

是不是很烦VScode 打开新的文件夹&#xff0c;每次都打开上次使用过的文件夹&#xff0c;只需在设置里面改一个设置就可以避免了。 Ctrl &#xff0c;打开设置&#xff0c;搜索 window.restoreWindows 通过这种设置就可以让VScode 每次打开新的文件夹而不打开上次的文件夹。

Apache RocketMQ 5.0 腾讯云落地实践

Apache RocketMQ 发展历程回顾 RocketMQ 最早诞生于淘宝的在线电商交易场景&#xff0c;经过了历年双十一大促流量洪峰的打磨&#xff0c;2016年捐献给 Apache 社区&#xff0c;成为 Apache 社区的顶级项目&#xff0c;并在国内外电商&#xff0c;金融&#xff0c;互联网等各行…

ST股票预测模型(机器学习_人工智能)

知己知彼&#xff0c;百战不殆&#xff1b;不知彼而知己&#xff0c;一胜一负&#xff1b;不知彼&#xff0c;不知己&#xff0c;每战必贻。--《孙子兵法》谋攻篇 ST股票 ST股票是指因连续两年净利润为负而被暂停上市的股票&#xff0c;其风险较高&#xff0c;投资者需要谨慎…