使用DETR 训练VOC数据集和自己的数据集

一、数据准备

DETR用的是COCO格式的数据集。

  • 如果要用DETR训练自己的数据集,直接利用Labelimg标注成COCO格式。
  • 如果是VOC数据集的话,要做一个格式转换,yolo格式的数据集,转换成coco格式

COCO数据集的格式类似这样,annotations文件夹里面有对应的train、val数据集的json文件。train2017则是训练集图片,其他同理。

在这里插入图片描述

VOC数据集的存放方式是这样的,转换格式就是找出Main文件夹下用于目标检测的图片。

在这里插入图片描述

Main文件夹下有train.txt文件,记录了训练集的图片。val.txt记录了验证集的图片

在这里插入图片描述

只需要修改注释中的两个路径即可(创建文件夹时没有加判断语句严谨一点应该加上)。

import os
import shutil
import sys
import json
import glob
import xml.etree.ElementTree as ET


START_BOUNDING_BOX_ID = 1
# PRE_DEFINE_CATEGORIES = None
# If necessary, pre-define category and its id
PRE_DEFINE_CATEGORIES = {"aeroplane": 1, "bicycle": 2, "bird": 3, "boat": 4,
                         "bottle": 5, "bus": 6, "car": 7, "cat": 8, "chair": 9,
                         "cow": 10, "diningtable": 11, "dog": 12, "horse": 13,
                         "motorbike": 14, "person": 15, "pottedplant": 16,
                         "sheep": 17, "sofa": 18, "train": 19, "tvmonitor": 20}


def get(root, name):
    vars = root.findall(name)
    return vars


def get_and_check(root, name, length):
    vars = root.findall(name)
    if len(vars) == 0:
        raise ValueError("Can not find %s in %s." % (name, root.tag))
    if length > 0 and len(vars) != length:
        raise ValueError(
            "The size of %s is supposed to be %d, but is %d."
            % (name, length, len(vars))
        )
    if length == 1:
        vars = vars[0]
    return vars


def get_filename_as_int(filename):
    try:
        filename = filename.replace("\\", "/")
        filename = os.path.splitext(os.path.basename(filename))[0]
        return int(filename)
    except:
        raise ValueError(
            "Filename %s is supposed to be an integer." % (filename))


def get_categories(xml_files):
    """Generate category name to id mapping from a list of xml files.

    Arguments:
        xml_files {list} -- A list of xml file paths.

    Returns:
        dict -- category name to id mapping.
    """
    classes_names = []
    for xml_file in xml_files:
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall("object"):
            classes_names.append(member[0].text)
    classes_names = list(set(classes_names))
    classes_names.sort()
    return {name: i for i, name in enumerate(classes_names)}


def convert(xml_files, json_file):
    json_dict = {"images": [], "type": "instances",
                 "annotations": [], "categories": []}
    if PRE_DEFINE_CATEGORIES is not None:
        categories = PRE_DEFINE_CATEGORIES
    else:
        categories = get_categories(xml_files)
    bnd_id = START_BOUNDING_BOX_ID
    for xml_file in xml_files:
        tree = ET.parse(xml_file)
        root = tree.getroot()
        path = get(root, "path")
        if len(path) == 1:
            filename = os.path.basename(path[0].text)
        elif len(path) == 0:
            filename = get_and_check(root, "filename", 1).text
        else:
            raise ValueError("%d paths found in %s" % (len(path), xml_file))
        # The filename must be a number
        image_id = get_filename_as_int(filename)
        size = get_and_check(root, "size", 1)
        width = int(get_and_check(size, "width", 1).text)
        height = int(get_and_check(size, "height", 1).text)
        image = {
            "file_name": filename,
            "height": height,
            "width": width,
            "id": image_id,
        }
        json_dict["images"].append(image)
        # Currently we do not support segmentation.
        #  segmented = get_and_check(root, 'segmented', 1).text
        #  assert segmented == '0'
        for obj in get(root, "object"):
            category = get_and_check(obj, "name", 1).text
            if category not in categories:
                new_id = len(categories)
                categories[category] = new_id
            category_id = categories[category]
            bndbox = get_and_check(obj, "bndbox", 1)
            xmin = int(get_and_check(bndbox, "xmin", 1).text) - 1
            ymin = int(get_and_check(bndbox, "ymin", 1).text) - 1
            xmax = int(get_and_check(bndbox, "xmax", 1).text)
            ymax = int(get_and_check(bndbox, "ymax", 1).text)
            assert xmax > xmin
            assert ymax > ymin
            o_width = abs(xmax - xmin)
            o_height = abs(ymax - ymin)
            ann = {
                "area": o_width * o_height,
                "iscrowd": 0,
                "image_id": image_id,
                "bbox": [xmin, ymin, o_width, o_height],
                "category_id": category_id,
                "id": bnd_id,
                "ignore": 0,
                "segmentation": [],
            }
            json_dict["annotations"].append(ann)
            bnd_id = bnd_id + 1

    for cate, cid in categories.items():
        cat = {"supercategory": "none", "id": cid, "name": cate}
        json_dict["categories"].append(cat)

    os.makedirs(os.path.dirname(json_file), exist_ok=True)
    json_fp = open(json_file, "w")
    json_str = json.dumps(json_dict)
    json_fp.write(json_str)
    json_fp.close()


if __name__ == "__main__":
    #  只需修改以下两个路径
    #  VOC数据集根目录
    voc_path = "VOC2012"
    
    #  保存coco格式数据集根目录
    save_coco_path = "VOC2COCO"
    
    #  VOC只分了训练集和验证集即train.txt和val.txt
    data_type_list = ["train", "val"]
    for data_type in data_type_list:
        os.makedirs(os.path.join(save_coco_path, data_type+"2017"))
        os.makedirs(os.path.join(save_coco_path, data_type+"_xml"))
        with open(os.path.join(voc_path, "ImageSets\Main", data_type+".txt"), "r") as f:
            txt_ls = f.readlines()
        txt_ls = [i.strip() for i in txt_ls]
        for i in os.listdir(os.path.join(voc_path, "JPEGImages")):
            if os.path.splitext(i)[0] in txt_ls:
                shutil.copy(os.path.join(voc_path, "JPEGImages", i),
                            os.path.join(save_coco_path, data_type+"2017", i))
                shutil.copy(os.path.join(voc_path, "Annotations", i[:-4]+".xml"), os.path.join(
                    save_coco_path, data_type+"_xml", i[:-4]+".xml"))
        xml_path = os.path.join(save_coco_path, data_type+"_xml")
        xml_files = glob.glob(os.path.join(xml_path, "*.xml"))
        convert(xml_files, os.path.join(save_coco_path,
                "annotations", "instances_"+data_type+"2017.json"))
        shutil.rmtree(xml_path)

结果如图所示,在voc2coco文件夹下有三个文件:

在这里插入图片描述

二、配置DETR

推荐使用命令行传递参数,这里修改main.py只是为了说明参数的意义,例如:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --coco_path /path/to/coco --output_dir ./output

对于argparse命令行参数的传递有问题可以参考:argparse — 命令行选项、参数和子命令解析器详解

修改main.py文件中的参数、超参数:

在这里插入图片描述

这个最好不改,就设为coco。去修改models/detr.py 文件的num_classes(大概在三百多行)。这里作者也解释了num_classes其实并不是类别数,因为coco只有80类,因为coco的id是不连续的,coco数据集最大的ID是90,所以原论文时写的MAX ID +1 即91。对于我们自定义的和转化的VOC数据集num_classes就是类别数。

在这里插入图片描述

在这里插入图片描述

coco_path改成自己的coco路径。

在这里插入图片描述

其中预训练权重需要修改一下,coco是80类,不能直接加载官方的模型。voc是20类。把num_classes改成21。传入得到的detr_r50_21.pth新的权重文件。

import torch
pretrained_weights=torch.load('detr-r50-e632da11.pth')
num_classes=21
pretrained_weights["model"]["class_embed.weight"].resize_(num_classes+1,256)
pretrained_weights["model"]["class_embed.bias"].resize_(num_classes+1)
torch.save(pretrained_weights,"detr_r50_%d.pth"%num_classes)

运行日志(特别难训练):

在这里插入图片描述

三、绘图

util文件夹下有plot_utils.py文件,可以绘制损失和mAP曲线。

在这里插入图片描述

plot_utils.py文件中加入代码运行即可:

if __name__ == "__main__":
	# 路径更换为保存输出的eval路径
	# mAP曲线
    files=list(Path("./outputs/eval").glob("*.pth"))
    plot_precision_recall(files)
    plt.show()
    # 路径更换为保存输出的路径
    # 损失曲线
    plot_logs(Path("./output"))
    plt.show()

四、推理

训练完毕后我们会得到一个checkpoint.pth的文件,可以用自己训练得到的模型来推理图片,代码如下:

import numpy as np
from models.detr import build
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as transforms

torch.set_grad_enabled(False)
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
          [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
transform_input = transforms.Compose([transforms.Resize(800),
                                      transforms.ToTensor(),
                                      transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])


def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
         (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=1)


def rescale_bboxes(out_bbox, size):
    img_w, img_h = size
    b = box_cxcywh_to_xyxy(out_bbox)
    b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32, device="cuda")
    return b


def plot_results(pil_img, prob, boxes, img_save_path):
    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
                                   fill=False, color=c, linewidth=3))
        cl = p.argmax()
        text = f'{CLASSES[cl]}:      {p[cl]:0.2f}'
        ax.text(xmin, ymin, text, fontsize=9,
                bbox=dict(facecolor='yellow', alpha=0.5))
    plt.savefig(img_save_path)
    plt.axis('off')
    plt.show()


def main(chenkpoint_path, img_path, img_save_path):
    args = torch.load(chenkpoint_path)['args']
    model = build(args)[0]
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)
    # 加载模型参数
    model_data = torch.load(chenkpoint_path)['model']
    model.load_state_dict(model_data)

    model.eval()
    img = Image.open(img_path).convert('RGB')
    size = img.size
    
    inputs = transform_input(img).unsqueeze(0)
    outputs = model(inputs.to(device))
    # 这类最后[0, :, :-1]索引其实是把背景类筛选掉了
    probs = outputs['pred_logits'].softmax(-1)[0, :, :-1]
    # 可修改阈值,只输出概率大于0.7的物体
    keep = probs.max(-1).values > 0.7
    bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], size)
    # 保存输出结果
    ori_img = np.array(img)
    plot_results(ori_img, probs[keep], bboxes_scaled, img_save_path)


if __name__ == "__main__":
    CLASSES = ['N/A', "aeroplane", "bicycle", "bird", "boat",
               "bottle", "bus", "car", "cat", "chair",
               "cow", "diningtable", "dog", "horse",
               "motorbike", "person", "pottedplant",
               "sheep", "sofa", "train", "tvmonitor", "background"]
    main(chenkpoint_path="checkpoint.pth", img_path="test.png",
         img_save_path="result2.png")

几点说明:

1.CLASSES是我们数据集对应的类别名,注意自己标注的顺序一定写对。

第一个类别是"N/A"既不是背景也不是前景,因为我们转换的数据集的索引是从1开始的,所以索引为0的类别就缺失了。背景类应该是索引最大的也就是第21类。其实上面的"background"我认为加上才是最严谨的。

在这里插入图片描述

2

chenkpoint_path:保存的权重文件
img_path:测试的图片路径
img_save_path:保存结果路径

3.可修改阈值,论文中默认只输出概率大于0.7的物体。

用VOC数据集训练的模型推理效果:
(VOC数据集中没有自行车一类所以识别不出来)

在这里插入图片描述

五、一些小bug

1.取整问题

UserWarning: floordiv is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the ‘trunc’ function NOT ‘floor’). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode=‘trunc’), or for actual floor division, use torch.div(a, b, rounding_mode=‘floor’).

在这里插入图片描述

这时一个torch版本原因导致的一个函数问题,报了一个警告。
models/position_encoding.py文件中的第44行改成如下形式即可。

在这里插入图片描述

2.num_class的设置问题

num_class的设置问题在github上有详细的讨论
引用作者原话:

在这里插入图片描述

num_class应该设置为max_id+1,比如上面的voc2coco数据集,索引从1到20,那么num_class应该设置为20+1=21,索引为21的类为背景类,但是因为索引从1开始,所以把索引为0 的类设置为N/A,既不是背景也不是前景,应该是缺失类。作者举例4个类别IDs分别为1,23,24,56那么num_class应该设置为57,索引为57的类为背景类。其中缺失索引值:0、2-22、25-55应该用N/A填充,都是缺失类。

3.Encoder的输入为什么要把特征图的维度进行变换 (bs, c, hw) -> (hw, bs, c)?

在这里插入图片描述

这里只是一个小细节,当初发现这里和ViT等论文的Encoder输入不太一样,不明白为什么要多此一举进行维度变换。这里其实是pytorch中注意力实现的一个不同,在源码中的文档中写的很清楚,pytorch中的transformer实现有一个batch_first=False的参数,也就是默认传入的第一个维度不是batch_size,所以才要进行一个维度变换。

在这里插入图片描述

References

DETR预训练模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/256240.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JAVAEE初阶 多线程进阶(一)

进阶面试题 一. 锁拓展1.1 乐观锁与悲观锁1.2 轻量级锁与重量级锁1.3 自旋锁和挂起等待锁1.4 普通互斥锁与读写锁1.5 公平锁与非公平锁1.6 可重入锁和不可重入锁 二.锁的优化策略2.1 锁的自适应2.2 锁消除2.3 锁粗化 三.CAS 一. 锁拓展 1.1 乐观锁与悲观锁 乐观锁 : 加锁前,预…

Linux IO模式之io_uring

1. 概述 作为科普性质的文章,在介绍 io_uring 之前,我们可以先整体看一下 linux 的 IO 模型大体有哪些类型。 图 1.1 从图 1.1 中可以看出,linux 的 IO 主要可以分为两个大类,而我们今天要介绍的 io_uring 就属于其中的 kernel …

从零开始构建高效的网校平台:在线教育系统源码的开发指南

随着科技的不断发展,在线教育在现代社会中变得愈发重要。本文将为您提供一份详尽的指南,从零开始构建高效的网校平台,覆盖在线教育系统源码的关键开发步骤。 第一步:明确需求和目标 在开始之前,明确您的网校平台的需…

vue看板使用电子数字

1、下载字体 https://www.dafont.com/theme.php?cat302&text0123456789 2、下载后将压缩包解压,并上传到https://link.csdn.net/?targethttps%3A%2F%2Fwww.fontsquirrel.com%2Ftools%2Fwebfont-generator 然后下载 3、项目中使用 在Vue项目中的assets中新建fonts文件夹…

k8s集群内部署nexus

一、前言 在k8s集群中部署nexus服务需要使用到pv、pvc服务来存储nexus的数据,需要使用service服务来提供对外访问nexus服务的端口,需要使用deployment服务来管理nexus服务,接下来就是用这些服务来在k8s集群中搭建nexus,pv服务使用…

系统设计——系统安全

HTTPS 是如何工作的? 安全超文本传输​​协议(HTTPS)是超文本传输​​协议(HTTP)的扩展。HTTPS 使用传输层安全性(TLS)传输加密数据。如果数据在网上被劫持,劫持者得到的只是二进制…

IDEA tomcat内存不足

-Xms256m -Xmx256m -XX:MaxNewSize256m -XX:MaxPermSize256m

密码明文传输漏洞 原理以及修复方法

漏洞名称 : 密码明文传输 漏洞描述 : 密码明文传输一般存在于web网站登录页面,用户名或者密码采用了明文传输,容易 被嗅探软件截取。 检测条件 :1、 已知Web网站具有登录页面。 检测方法: 1、 找到网站或者web系统登录页面。…

c jpeg 理论霍夫曼 DC AC表,c程序实现正向逆向转换

此4张表是理论表,不是针对某张图片的特定表。如程序不统计生成某图片的专用霍夫曼表,应该也可用理论表代用。 1.亮度DC表 左边第一列是二进制位数,就是对此位数编码 中间一列是生成比特流的位数,右边是生成的比特流。 2.色度DC…

NFTScan | 12.11~12.17 NFT 市场热点汇总

欢迎来到由 NFT 基础设施 NFTScan 出品的 NFT 生态热点事件每周汇总。 周期:2023.12.11~ 2023.12.17 NFT Hot News 01/ Pudgy Penguins 衍生 NFT Lil Pudgys 过去一天成交量超 1000 枚 ETH,位居第二 12 月 11 日,据 OpenSea 数据显示&#…

智慧养老:创新科技让老年生活更美好

智慧养老:创新科技让老年生活更美好 随着人口老龄化的加剧,智慧养老成为了关注焦点。智慧养老以创新科技为核心,旨在改善老年人的生活品质、促进健康、增强安全感和社会融入感。本文将详细介绍智慧养老的关键技术和应用场景,带您了…

Java中Exception的使用方法

Exception介绍异常处理机制的优缺点常见的Exception异常处理的常见错误优雅的处理异常异常处理中存在的性能问题Java自定义异常示例 Exception介绍 在Java中,异常(Exception)是一种特殊类型的对象,表示程序运行过程中发生的意外或…

未来医疗的新希望:人工智能与智能器官的奇妙融合

导言 人工智能技术的不断演进在医疗领域掀起了一场革命。随着智能器官与人工智能的深度融合,虽然医学领域迎来了前所未有的机遇,但同时也伴随着一系列潜在的问题与挑战。本文将深入探讨人工智能如何与智能器官相互融合,为医学带来新的治疗可能…

构建健康中国:医保支付购药系统的技术实现

在数字化时代,医保支付购药系统的技术实现成为医疗保障体系不可或缺的一环。通过整合医疗资源、优化服务流程,这一系统为患者提供了更便捷、高效的医疗服务。本文将深入探讨医保支付购药系统的技术架构与实现方法。 1. 技术架构概述 医保支付购药系统…

服务器数据恢复-raid5故障导致上层分区无法访问的数据恢复案例

服务器数据恢复环境&故障: 一台服务器上3块硬盘组建了一组raid5磁盘阵列。服务器运行过程中有一块硬盘的指示灯变为红色,raid5磁盘阵列出现故障,服务器上层操作系统的分区无法识别。 服务器数据恢复过程: 1、将故障服务器上磁…

【九】python模板方法模式

文章目录 9.1 模板方法模式概述9.2 代码示例9.3 模板方法模式的UML图9.4 模板方法模式的优点和缺点9.4.1 模板方法模式提供以下优点:9.4.2 模板方法模式的缺点如下: 9.1 模板方法模式概述 模板方法模式是一种行为设计模式,它使用一个抽象的基类定义了一个操作中的算…

为什么网站需要SSL证书?

在当今数字化的世界里,网站安全性已经成为互联网用户关注的重点。SSL证书(Secure Sockets Layer)作为一种安全技术,已经成为保障网站安全性的基本工具。下面让我们来看看为什么网站需要SSL证书以及安装后的各种好处。 永久免费SS…

vp与vs联合开发-通过CogAcqFifoTool工具连接相机

1.完成相机硬件配置后 2.完成vp与vs联合开发配置功能后 1.创建winform 项目 目的 : 搭建 界面应用 2. 1. vpp文件存入 项目的debug 目录中 目的: 在项目中加载本地vpp文件 读取相机工具 1.控件CogRecordDisplay 用于显示相机拍摄照片和实施显示的窗口 2和3 …

HarmonyOS(十五)——状态管理之@Prop装饰器(父子单向同步)

上一篇文章我们认识了状态管理的State装饰器(组件内状态),接下来我们学习另外一个状态管理装饰器Prop装饰器。 Prop装饰的变量可以和父组件建立单向的同步关系。Prop装饰的变量是可变的,但是变化不会同步回其父组件。 说明&#…