智能优化算法应用:基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.社会群体算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用社会群体算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.社会群体算法

社会群体算法原理请参考:https://blog.csdn.net/u011835903/article/details/119677682
社会群体算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


社会群体算法参数如下:

%% 设定社会群体优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明社会群体算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/255993.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HTML中边框样式、内外边距、盒子模型尺寸计算(附代码图文示例)【详解】

Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍HTML中边框样式、内外边距、盒子模型尺寸计算以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获,友友们有任何问…

78-C语言-完数的判断,以及输出其因子

简介:一个数如果恰好等于它的因子之和,这个数就称为完数,C语言编程找出1000之内的所有完数,并输出其因子。因子可以整除该数字的数, 如6的因子:1 2 3,6%10 6%20 6%30 解释全在注…

windows安装conda小环境 windows安装anaconda python jupyter anaconda

1 如果想体验在线版的jupyter,可以访问anaconda在Anaconda Cloud,需要注册github: 1 下载anaconda ,并安装 1.1 下载 或者去清华镜像下载 Free Download | Anacondahttps://www.anaconda.com/downloadIndex of /anaconda/arch…

Template for directive ‘electronicSign‘ must have exactly one root element.

问题: 原因: angularjs 提示模版指令需要根元素 解决办法: 清理头尾

【ros2 control 机器人驱动开发】简单双关节机器人学习-example 1

【ros2 control 机器人驱动开发】简单双关节机器人学习-example 1 文章目录 前言一、RR机器人创建description pkg创建demos pkg 二、创建controller相关创建example pkg 三、测试运行总结 前言 本系列文件主要有以下目标和内容: 为系统、传感器和执行器创建 Har…

Amazon CodeWhisperer 在 vscode 的应用

文章作者:旧花阴 CodeWhisperer 是一款可以帮助程序员更快、更安全地编写代码的工具,可以在他们的开发环境中实时提供代码建议和推荐。亚马逊云科技发布的这款代码生成工具 CodeWhisperer 最大的优势就是对于个人用户免费。以在 vscode 为例,演示安装过程…

Python tkinter控件全集之组合选择框 ttk.ComboBox

Tkinter标准库 Tkinter是Python的标准GUI库,也是最常用的Python GUI库之一,提供了丰富的组件和功能,包括窗口、按钮、标签、文本框、列表框、滚动条、画布、菜单等,方便开发者进行图形界面的开发。Tkinter库基于Tk for Unix/Wind…

【Image】图像处理

计算机视觉 CV Perception 如自动驾驶领域。 只要是从所谓的图像当中去抽取信息的过程,我们都叫做Perception。 视觉检测可以涵盖二维检测,如车辆、人和信号灯的检测。另外,还可以控制三维信息,直接在三维空间中操作数据。 SL…

IDEA新建jdk8 spring boot项目

今天新建spring boot项目发现JDK版本最低可选17。 但是目前用的最多的还是JDK8啊。 解决办法 Server URL中设置: https://start.aliyun.com/设置完成后,又可以愉快的用jdk8创建项目了。 打包的jar无法运行 小伙伴可能会发现,默认的配置打…

9、ble_mesh基础

node节点,不属于网络的设备称为未配置设备。未配置的设备无法发送或接收网格消息;但是,它会向 Provisioners 宣传其存在。 Provisioner供应,验证,邀请,加入网络成为节点。 一个节点有多个控制或开关&#x…

四通道 DMOS 全桥驱动MS35631N/MS35631

MS35631N/MS35631 是一款四通道 DMOS 全桥驱动器,可以驱动两 个步进电机或者四个直流电机。每个全桥的驱动电流在 24V 电源下可以 达到 1.2A 。 MS35631N/MS35631 集成了固定关断时间的 PWM 电流校正 器,以及一个 2bit 的非线性 DAC &…

美颜SDK技术对比,深入了解视频美颜SDK的工作机制

如何在实时视频中呈现更加自然、美丽的画面,而这正是美颜SDK技术发挥作用的领域之一。本文将对几种主流视频美颜SDK进行深入比较,以揭示它们的工作机制及各自的优劣之处。 随着科技的不断进步,美颜技术已经从简单的图片处理发展到了视频领域…

Vue3-22-组件-插槽的使用详解

插槽是干啥的 插槽 就是 组件中的一个 占位符, 这个占位符 可以接收 父组件 传递过来的 html 的模板值,然后进行填充渲染。 就这么简单,插槽就是干这个的。要说它的优点吧,基本上就是可以使子组件的内容可以被父组件控制&#xf…

商业办公楼烟雾预警,这个方法我只说一次!

烟感监控在现代社会中扮演着至关重要的角色,不仅在火灾预防和安全管理中具有关键性的作用,同时也对人们的生命财产安全起到了至关重要的保护作用。 随着科技的不断发展,烟感监控系统的功能日益强大,为各行业提供了更加智能、高效的…

python图像二值化处理

目录 1、双峰法 2、P参数法 3、迭代法 4、OTSU法 图像的二值化处理是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。二值化是图像分割的一种最简单的方法,可以把灰度图像转换成二值图像。具体实现是将大…

lambda自定义比较规则-sort函数或优先队列

Lambda表达式的一般形式为 [captures](params){body}对于优先队列的自定义排序规则&#xff0c;常见方法是写成结构体形式 struct cmp{bool operator()(pair<int,int> map1,pair<int,int> map2){return map1.second>map2.second;} }; priority_queue<pair&…

electron与cesium组件入门应用功能

electron与cesium组件入门应用功能 运行应用效果图&#xff1a; electron应用目录&#xff0c;需要包括三个文件: index.html main.js package.json (一)、创建一个新项目 目录名称&#xff1a;project_helloWolrd (二)、生成package.json文件 npm init --yes(三&#x…

饥荒Mod 开发(十六):五格装备栏

饥荒Mod 开发(十五)&#xff1a;小地图显示物品 源码 饥荒中的装备栏只有3个实在太少了&#xff0c;手&#xff0c;头&#xff0c;身体。 身体上装备的物品会有冲突&#xff0c;很多不能一起装备&#xff0c;比如 衣服&#xff0c;项链&#xff0c;背包等。 而这三种物品又有自…

概率论复习

第一章&#xff1a;随机概率及其概率 A和B相容就是 AB 空集 全概率公式与贝叶斯公式&#xff1a; 伯努利求概率&#xff1a; 第二章&#xff1a;一维随机变量及其分布&#xff1a; 离散型随机变量求分布律&#xff1a; 利用常规离散性分布求概率&#xff1a; 连续性随机变量…