智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蛾群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蛾群算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蛾群算法

蛾群算法原理请参考:https://blog.csdn.net/u011835903/article/details/118894374
蛾群算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


蛾群算法参数如下:

%% 设定蛾群优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明蛾群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/255952.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mongodb复制集架构

目录 复制集架构 复制集优点 复制集模式 复制集搭建 复制集常用命令 复制集增删节点 复制集选举 复制集同步 oplog分析 什么是oplog 查看oplog oplog大小 复制集架构 复制集优点 数据复制: 数据在Primary节点上进行写入,然后异步地复制到Secondary节点&a…

[ CTF ]【天格】战队WriteUp-第七届“强网杯”全国安全挑战赛

第七届“强网杯”全国安全挑战赛 2023.12.16~2023.12.17 文章目录 【Misc】Pyjail ! Its myFILTER !!!easyfuzz谍影重重2.0签到Pyjail ! Its myRevenge !!!server_8F6C72124774022B.py 问卷调查 【Reverse】ezre 【Web】happygame 【强网先锋】石头剪刀布TrieSpeedUpezreez_fmt…

6TIM定时器

STM32的定时器功能众多,拥有基本定时功能,输出比较功能(如产生PWM波等),输入捕获(测量方波信号),读取正交编码器的波形。 1.中断原理 TIM定时器的基本功能是对输入的时钟进行计数&…

@KafkaListener 注解配置多个 topic

见如下示例 主要见 KafkaListener 中 topics 属性的配置 其中 ${xxxx.topic1} 为从springBoot 配置文件中读取的属性值 KafkaListener(topics {"${xxxx.topic1}", "${xxxx.topic2}"}, groupId "${xxxx.groupId}",containerFactory "xxx…

Redis一些常用的技术

文章目录 第1关:Redis 事务与锁机制第2关:流水线第3关:发布订阅第4关:超时命令第5关:使用Lua语言 第1关:Redis 事务与锁机制 编程要求 根据提示,在右侧编辑器Begin-End补充代码,根据…

最新AI创作系统ChatGPT系统源码+DALL-E3文生图+支持AI绘画+GPT语音对话功能

一、AI创作系统 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI…

Rust与python联动进行多线程跑数据

最近有个学弟想请教我联动多线程爬取数据的案例,看了以前的模版没有合适的,我就利用空闲时间,专门给他写了一段模版作为参考。这里遇到注意的是需要代理IP介入,才能让多线程爬取减少网站风控限制。 以下是一个使用 Rust 编写的爬虫…

【NI-RIO入门】使用LabVIEW进行数据采集测量

于ni kb摘录 选择合适的编程模式 CompactRIO系统具有至少两个用户可选模式。某些CompactRIO型号具有附加的用户可选模式,可以在实时NI-DAQmx中进行编程。请参考本文以判断您的CompactRIO是否能够使用实时NI-DAQmx。将目标添加到项目后,将提示您选择要使…

函数torch.bincount( )的用法

torch.bincount()函数是PyTorch中的一个函数,用于计算一维整数张量中每个非负整数值出现的频次 函数的用法 : torch.bincount(input, weightsNone, minlength0) → Tensor 参数: input:输入的一维整数张量weights(…

2024免费mac苹果电脑系统电脑管家CleanMyMac X

macOS已经成为最受欢迎的桌面操作系统之一,它提供了直观、简洁的用户界面,使用户可以轻松使用和管理系统。macOS拥有丰富的应用程序生态系统;还可以与其他苹果产品和服务紧密协作,如iPhone、iPad,用户可以通过iCloud同…

CompleteFuture与Future的比较

CompleteFuture的介绍CompleteFuture的特点CompleteFuture的应用场景CompletableFuture的优缺点Future的介绍Future的特点Future的应用场景Future的优缺点CompletableFuture和Future的区别CompletableFuture和Future的关联关系CompletableFuture和Future的使用示例CompletableF…

基于点云去滤除灰尘的滤波算法调研

背景 激光雷达在恶劣天气下会影响感知识别的精度,造成误差,将灰尘,雨雪误识别为障碍物,为了降低对灰尘的误检,因此调研相关的灰尘滤波算法。 方法1 反射强度滤波+半径异常值移除 Design of a LIOR-Based De-Dust Filter for LiDAR Sensors inOff-Road Vehicles 1 上文中…

卷积神经网络的学习与实现

基于matlab的卷积神经网络(CNN)讲解及代码_matlab中如何查看cnn损失函数-CSDN博客 可以看到与BP神经网络相比,卷积神经网络更加的复杂,这里将会以cnn作为学习案例。 1.经典反向传播算法公式详细推导 这里引用经典反向传播算法公式详细推导_反向目标公…

关联规则 FP-Growth算法

FP-Growth算法 FP-growth 算法思想 FP-growth算法是韩家炜老师在2000年提出的关联分析算法,它采取如下分治策略: 将提供频繁项集的数据库压缩到一棵频繁模式树 (FP-Tree)但仍保留项集关联信息。FP-growth算法是对Apriori方法的改进。生成一个频繁模式而不需要生成…

SQLSERVER数据库主要状态和切换路径

前言 一个SQLSERVER数据库会处于很多种状态,例如 ONLINE 、RESTORING 、RECOVERING 、RECOVERY_PENDING 、SUSPECT、EMERGENCY 、OFFLINE等等。 只有在ONLINE的状态下,数据库才能被正常访问。 下图主要反映了数据库的主要状态之间的切换路径 下面说一…

【MAC】M2 安装mysql

一、docker下载地址 下载地址 二、安装docker完成 三、安装mysql 一、拉取镜像 # 拉取镜像 docker pull mysql# 或者 docker pull mysql:latest# 以上两个命令是一致的,默认拉取的就是 latest 版本的# 我们还可以用下面的命令来查看可用版本: docker…

数据结构(Chapter Two -02)—顺序表基本操作实现

在前一部分我们了解线性表和顺序表概念,如果有不清楚可以参考下面的博客: 数据结构(Chapter Two -01)—线性表及顺序表-CSDN博客 首先列出线性表的数据结构: #define MaxSize 50 //定义顺序表最大长度 typedef struct{ElemType data…

HarmonyOS4.0从零开始的开发教程19HarmonyOS应用/元服务上架

HarmonyOS(十七)HarmonyOS应用/元服务上架 概述 当您开发、调试完HarmonyOS应用/元服务,就可以前往AppGallery Connect申请上架,华为审核通过后,用户即可在华为应用市场获取您的HarmonyOS应用/元服务。 HarmonyOS会…

xxl-job 分布式调度学习笔记

1.概述 1.1什么是任务调度 业务场景: 上午10点,下午2点发放一批优惠券 银行系统需要在信用卡到期还款日的前三天进行短信提醒 财务系统需要在每天凌晨0:10分结算前一天的财务数据,统计汇总 不同系统间的数据需要保持一致,这时…

3.2 内容管理模块 - 课程分类、新增课程、修改课程

内容管理模块-课程分类、新增课程、修改课程 文章目录 内容管理模块-课程分类、新增课程、修改课程一、课程分类1.1 课程分类表1.2 查询树形结构1.2.1 表自连接1.2.2 SQL递归 1.3 Mapper1.4 Service1.5 Controller1.6 效果图 二、添加课程2.1 需求分析2.2 数据表2.2.1 课程基础…