Pytorch神经网络的参数管理

       

目录

一、参数访问

1、目标参数

2、一次性访问所有参数

3、从嵌套块收集参数

二、参数初始化

1、内置初始化

2、自定义初始化

3、参数绑定


       在选择了架构并设置了超参数后,我们就进入了训练阶段。此时,我们的目标是找到使损失函数最小化的模型参数值。经过训练后,我们将需要使用这些参数来做出未来的预测。此外,有时我们希望提取参数,以便在其他环境中复用它们,将模型保存下来,以便它可以在其他软件中执行,或者为了获得科学的理解而进行检查。

       我们首先看一下具有单隐藏层的多层感知机。

import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
tensor([[0.0374],
        [0.0073]], grad_fn=<AddmmBackward0>)

一、参数访问

       我们从已有模型中访问参数。当通过`Sequential`类定义模型时,我们可以通过索引来访问模型的任意层。这就像模型是一个列表一样,每层的参数都在其属性中。如下所示,我们可以检查第二个全连接层的参数。

print(net[2].state_dict())  # nn.Linear(4, 8):net[0]  nn.ReLU():net[1]  nn.Linear(8, 1):net[2]
OrderedDict([('weight', tensor([[-0.1818,  0.1352,  0.2452,  0.0901, -0.0235,  0.1942, -0.3280, -0.0230]])), ('bias', tensor([0.0322]))])

       输出的结果告诉我们一些重要的事情:首先,这个全连接层包含两个参数,分别是该层的权重(weight)和偏置(bias)。两者都存储为单精度浮点数(float32)。注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。

1、目标参数

       注意,每个参数都表示为参数类的一个实例。要对参数执行任何操作,首先我们需要访问底层的数值。有几种方法可以做到这一点。有些比较简单,而另一些则比较通用。下面的代码从第二个全连接层(即第三个神经网络层)提取偏置,提取后返回的是一个参数类实例,并进一步访问该参数的值。

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
<class 'torch.nn.parameter.Parameter'>
Parameter containing:
tensor([0.0322], requires_grad=True)
tensor([0.0322])

       参数是复合的对象,包含值、梯度和额外信息。这就是我们需要显式参数值的原因。除了值之外,我们还可以访问每个参数的梯度。在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。

print(net[2].bias.grad == None)
print(net[2].weight.grad == None)
True
True

2、一次性访问所有参数

       当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂,因为我们需要递归整个树来提取每个子块的参数。下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。

print(*[(name, param.shape) for name, param in net[0].named_parameters()])  # net[0].named_parameters()方法返回一个迭代器,用于迭代每个层的参数。每个参数都是一个元组,包含参数的名称和参数本身。
print(*[(name, param.shape) for name, param in net.named_parameters()]) # net.named_parameters()方法返回一个迭代器,用于迭代整个神经网络模型net中的所有层的参数。
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))

       在这个上下文中,星号*被用作参数解包操作符。它的作用是将列表或元组中的元素解包成单独的参数,然后传递给函数。

       使用解包操作符*可以将列表或元组中的元素作为单独的参数传递给函数,而不是将整个列表或元组作为一个参数传递。这在需要将可变数量的参数传递给函数时非常有用,可以方便地传递多个参数而无需显式地指定参数的个数。在这个例子中,print函数会将解包后的参数逐个打印出来。

       这为我们提供了另一种访问网络参数的方式,如下所示。 

net.state_dict()['2.bias'].data
tensor([0.0887])

3、从嵌套块收集参数

       让我们看看,如果我们将多个块相互嵌套,参数命名约定是如何工作的。我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。

def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())

def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}', block1())    # .add_module()可以传一个字符串进去给block命名
    return net

rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
tensor([[0.2596],
        [0.2596]], grad_fn=<AddmmBackward0>)

       设计了网络后,我们看看它是如何工作的。

print(rgnet)
Sequential(
  (0): Sequential(
    (block 0): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 1): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 2): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 3): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
  )
  (1): Linear(in_features=4, out_features=1, bias=True)
)

       因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet[0][1][0].bias.data
tensor([ 0.1999, -0.4073, -0.1200, -0.2033, -0.1573,  0.3546, -0.2141, -0.2483])

二、参数初始化

       知道了如何访问参数后,现在我们看看如何正确地初始化参数。深度学习框架提供默认随机初始化,也允许我们创建自定义初始化方法,满足我们通过其他规则实现初始化权重。

       默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵,这个范围是根据输入和输出维度计算出的。PyTorch的`nn.init`模块提供了多种预置初始化方法

1、内置初始化

       让我们首先调用内置的初始化器(nn.init)。下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量,且将偏置参数设置为0。

def init_normal(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, mean=0, std=0.01)
        nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([-0.0214, -0.0015, -0.0100, -0.0058]), tensor(0.))

       我们还可以将所有参数初始化为给定的常数,比如初始化为1。

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)
        nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([1., 1., 1., 1.]), tensor(0.))

       我们还可以对某些块应用不同的初始化方法。例如,下面我们使用Xavier初始化方法初始化第一个神经网络层,然后将第三个神经网络层初始化为常量值42。

def init_xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)
def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
tensor([ 0.5236,  0.0516, -0.3236,  0.3794])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])

2、自定义初始化

       有时,深度学习框架没有提供我们需要的初始化方法。在下面的例子中,我们使用以下的分布为任意权重参数$w$定义初始化方法:

       同样,我们实现了一个`my_init`函数来应用到`net`。

def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape)
                        for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5

net.apply(my_init)
net[0].weight[:2]
Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])
tensor([[5.4079, 9.3334, 5.0616, 8.3095],
        [0.0000, 7.2788, -0.0000, -0.0000]], grad_fn=<SliceBackward0>)

       注意,我们始终可以直接设置参数。

net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
tensor([42.0000, 10.3334,  6.0616,  9.3095])

3、参数绑定

       有时我们希望在多个层间共享参数:我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                    shared, nn.ReLU(),
                    shared, nn.ReLU(),
                    nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])

       这个例子表明第三个和第五个神经网络层的参数是绑定的。它们不仅值相等,而且由相同的张量表示。因此,如果我们改变其中一个参数,另一个参数也会改变。

       这里有一个问题:当参数绑定时,梯度会发生什么情况?答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层(即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/255805.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【漏洞复现】华为Auth-Http服务文件读取漏洞

Nx01 产品简介 Huawei Auth-HTTP Server 1.0 可以实现基于角色的访问控制&#xff0c;通过用户的身份认证和权限控制&#xff0c;确保只有经过授权的用户可以访问特定的资源和服务。它支持常见的身份认证协议和技术&#xff0c;如LDAP、RADIUS、TACACS等&#xff0c;能够与企业…

tensorflow入门 自定义模型

前面说了自定义的层&#xff0c;接下来自定义模型&#xff0c;我们以下图为例子 这个模型没啥意义&#xff0c;单纯是为了写代码实现这个模型 首先呢&#xff0c;我们看有几个部分&#xff0c;dense不需要我们实现了&#xff0c;我们就实现Res&#xff0c;为了实现那个*3,我们…

Postman使用总结--参数化

将 测试数据&#xff0c;组织到 数据文件中&#xff0c;通过脚本的反复迭代&#xff0c;使用不同的数据&#xff0c;达到测试不同用例的目标 数据文件有两种&#xff1a; CSV &#xff08;类似于excel&#xff09; 格式简单用这个 文件小 JSON&#xff08;字典列表&#x…

简单几步完成SVN的安装

介绍以及特点 SVN&#xff1a;Subversion&#xff0c;即版本控制系统。 1.代码版本管理工具 2.查看所有的修改记录 3.恢复到任何历史版本和已经删除的文件 4.使用简单上手快&#xff0c;企业安全必备 下载安装 SVN的安装分为两部分&#xff0c;第一部分是服务端安装&…

C# 图解教程 第5版 —— 第19章 枚举器和迭代器

文章目录 19.1 枚举器和可枚举类型19.2 IEnumerator 接口19.3 IEnumerable 接口19.4 泛型枚举接口19.5 迭代器19.5.1 迭代器块19.5.2 使用迭代器来创建枚举器19.5.3 使用迭代器来创建可枚举类型 19.6 常见迭代器模式19.7 产生多个可枚举类型19.8 将迭代器作为属性19.9 迭代器的…

计算机毕业设计—基于Koa+vue的高校宿舍管理系统宿舍可视化系统

项目介绍 项目背景 随着科技的发展&#xff0c;智能化管理越来越重要。大学生在宿舍的时间超过了1/3&#xff0c;因此良好的宿舍管理对学生的生活和学习极为关键。学生宿舍管理系统能够合理安排新生分配宿舍&#xff0c;不浪费公共资源&#xff0c;减轻学校管理压力&#xff…

IDEA运行JSP启动后页面中文乱码

源代码截图&#xff1a; 运行结果截图&#xff1a; 在<head>标签内加入代码 <% page contentType"text/html; charsetgb2312"%> 重启服务器&#xff0c;问题已改善 ————————————————— 该文仅供学习以及参考&#xff0c;可做笔记收藏…

【工具使用-Qt】Qt如何查看帮助文档

一&#xff0c;简介 Qt不需要单独下载帮助文档&#xff0c;在安装的时候&#xff0c;就已经帮你下载好了&#xff0c;在目录&#xff1a;安装目录/Qt5.14.2/Docs/目录下了。 二&#xff0c;查看方法 打开IDE&#xff0c;点击“帮助”&#xff1a; 输入想要查找的内容&…

pytorch文本分类(三)模型框架(DNNtextCNN)

pytorch文本分类&#xff08;三&#xff09;模型框架&#xff08;DNN&textCNN&#xff09; 原任务链接 目录 pytorch文本分类&#xff08;三&#xff09;模型框架&#xff08;DNN&textCNN&#xff09;1. 背景知识深度学习 2. DNN2.1 从感知器到神经网络2.2 DNN的基本…

电脑操作系统深度剖析:Windows、macOS和Linux的独特特性及应用场景

导言 电脑操作系统是计算机硬件和应用软件之间的桥梁&#xff0c;不同的操作系统在用户体验、性能和安全性方面有着独特的特色。电脑操作系统是计算机系统中的核心组件&#xff0c;不同的操作系统在设计理念、用户体验和应用领域上存在显著差异。本文将深入探讨几种常见的电脑操…

智能优化算法应用:基于黑猩猩算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于黑猩猩算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于黑猩猩算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.黑猩猩算法4.实验参数设定5.算法结果6.参考文…

Excel小技能:excel如何将数字20231211转化成指定日期格式2023/12/11

给了一串数字20231211&#xff0c;想要转成指定格式的日期格式&#xff0c;发现设置单元格格式为指定日期格式不生效&#xff0c;反而变成很长很长的一串#这个&#xff0c;如图所示&#xff1a; 其实&#xff0c;正确的做法如下&#xff1a; 1&#xff09;打开数据功能界面&am…

Android-高效加载大图

Android 高效加载大图 前言读取位图尺寸和类型将按比例缩小的版本加载到内存中 前言 图片有各种形状和大小。在很多情况下&#xff0c;它们的大小超过了典型应用界面的要求。例如&#xff0c;系统“图库”应用会显示使用 Android 设备的相机拍摄的照片&#xff0c;这些照片的分…

助力智能人群检测计数,基于YOLOv8开发构建通用场景下人群检测计数识别系统

在一些人流量比较大的场合&#xff0c;或者是一些特殊时刻、时段、节假日等特殊时期下&#xff0c;密切关注当前系统所承载的人流量是十分必要的&#xff0c;对于超出系统负荷容量的情况做到及时预警对于管理团队来说是保障人员安全的重要手段&#xff0c;本文的主要目的是想要…

智能手表上的音频(五):录音

上篇讲了语音通话&#xff0c;本篇讲录音。录音功能就是把录到的音频保存成文件。保存文件的格式支持两种&#xff1a;一是PCM(16K采样)的WAV格式&#xff0c;二是AMR-NB&#xff08;8k采样&#xff09;的AMR格式。WAV格式简单&#xff1a;44字节的文件头PCM 数据&#xff0c;示…

关于前端学习的思考-浮动元素嵌套块级元素12.18

1、块级元素嵌套浮动元素 先摆图片&#xff0c;当橘色的盒子高度减少的时候&#xff0c;NK AD TB PK NN并不会减少。如何解决呢&#xff1f; 加一个overflow&#xff1a;clip或者hidden 2、浮动元素嵌套块级元素 加一个overflow&#xff1a;clip或者hidden 综上所述&#xff0…

DC-5靶场

目录 DC-5靶机&#xff1a; 先进行主机发现&#xff1a; 发现文件包含&#xff1a; 上传一句话木马&#xff1a; 反弹shell&#xff1a; 提权漏洞利用&#xff1a; 下载exp&#xff1a; 第一个文件 libhax.c 第二个文件r…

人工智能_机器学习069_SVM支持向量机_网格搜索_交叉验证参数优化_GridSearchCV_找到最优的参数---人工智能工作笔记0109

然后我们再来说一下SVC支持向量机的参数优化,可以看到 这次我们需要,test_data这个是测试数据,容纳后 train_data这个是训练数据 这里首先我们,导出 import numpy as np 导入数学计算包 from sklearn.svm import SVC 导入支持向量机包 分类器包 def read_data(path): wit…

apache shiro 反序列化漏洞解决方案

apache shiro 反序列化漏洞解决方案 反序列化漏洞解决方案产生原因解决方案1&#xff1a;1.升级shiro至最新版本1.7.1解决方案2&#xff1a;修改rememberMe默认密钥&#xff0c;生成随机密钥。 反序列化漏洞解决方案 反序列化漏洞介绍 序列化&#xff1a;把对象转换为字符串或…

弹幕情感分析可视化

弹幕情感分析可视化 引言1. 弹幕数据爬取2. 弹幕数据处理3. 弹幕数据可视化4. 弹幕情感分析5. 创新点&#xff1a;弹幕情感倾向分布 引言 当今互联网时代&#xff0c;大量的弹幕数据蕴含着丰富的信息&#xff0c;通过对这些数据进行分析和可视化&#xff0c;我们能够深入了解用…