深度学习中的潜在空间

1 潜在空间定义

Latent Space 潜在空间:Latent ,这个词的语义是“隐藏”的意思。“Latent Space 潜在空间”也可以理解为“隐藏的空间”。Latent Space 这一概念是十分重要的,它在“深度学习”领域中处于核心地位,即它是用来学习数据的潜在特征,以及学习如何简化这些数据特征的表达,以便发现某种规律模式,最终来识别、归类、处理这些数据。

形式上,潜在空间被定义为抽象的多维空间,它编码外部观察事件的有意义的内部表示。在外部世界中相似的样本在潜在空间中彼此靠近。

为了更好地理解这个概念,让我们考虑一下人类如何感知世界。通过将每个观察到的事件编码为我们大脑中的压缩表示,我们能够理解广泛的主题。例如,我们不会记住狗的每一个外观细节,以便能够在街上认出一只狗。正如我们在下图中所看到的,我们保留了狗的一般外观的内部表示:

以类似的方式,潜在空间试图通过空间表示向计算机提供对世界的压缩理解。

2 潜在空间的重要性

深度学习已经彻底改变了我们生活的许多方面,其应用范围从自动驾驶汽车到预测严重疾病。它的主要目标是将原始数据(例如图像的像素值)转换为合适的内部表示或特征向量,学习子系统(通常是分类器)可以从中检测或分类输入中的模式。因此,我们意识到深度学习和潜在空间是密切相关的概念,因为前者的内部表示构成了后者。

正如我们在下面看到的,深度学习模型将输入原始数据并输出位于称为潜在空间的低维空间中的判别特征。然后使用这些特征来解决各种任务,如分类、回归或重建:

为了更好地理解潜在空间在深度学习中的重要性,我们应该思考以下问题:为什么我们必须在分类、回归或重建之前在低维潜在空间中对原始数据进行编码?答案是数据压缩。具体来说,在我们的输入数据是高维的情况下,不可能直接从原始数据中学习重要信息。例如,在图像分类任务中,输入维度可能与输入像素相对应。系统似乎不可能通过查看如此多的值来学习有用的分类模式。解决方案是使用深度神经网络将高维输入空间编码为低维潜在空间。

3 实例

通过一些例子,理解潜在空间的存在对于捕获任务复杂性和实现高性能是必要的。

3.1 图像特征空间

正如我们之前提到的,潜在空间是每个卷积神经网络不可或缺的一部分,它以图像的原始像素作为输入,并在最后一层对潜在空间中的一些高级特征进行编码。这个潜在空间使模型能够使用低维判别特征而不是高维原始像素来执行任务(例如,分类)。在下图中,我们可以看到 CNN 的一般架构:

训练后,模型的最后一层捕获了图像分类任务所需的重要输入模式。在潜在空间中,描绘同一对象的图像具有非常接近的表示。通常,潜在空间中向量的距离对应于原始图像的语义相似性。

下面,我们可以看到动物分类模型的潜在空间是怎样的。绿色点对应于从模型的最后一层提取的每个图像的潜在向量。我们观察到相同动物的向量更接近潜在空间。因此,模型更容易使用这些特征向量而不是原始像素值对输入图像进行分类:

3.2 词嵌入空间

在自然语言处理中,词嵌入是词的数字表示,因此相似的词具有接近的表示。因此,词嵌入位于一个潜在空间中,每个词都被编码成一个低维语义向量。有许多学习词嵌入的算法,如 Word2Vec 或 GloVe。在下图中,我们可以看到潜在空间中词嵌入的拓扑图:

正如预期的那样,语义相似的词,如“toilet”和“bathroom”,在潜在空间中有紧密的词嵌入。

3.3 GANs

GAN 将来自某些先验分布和输出的随机向量作为输入和图像。该模型的目标是学习生成真实数据集的底层分布。例如,如果我们的数据集包含带椅子的图像,则 GAN 模型会学习生成带椅子的合成图像。GAN 的输入充当潜在向量,因为它将输出图像编码为低维向量。为了验证这一点,我们可以看到插值在潜在空间中是如何工作的,因为我们可以通过线性修改潜在向量来处理图像的特定属性。在下图中,我们可以看到如何通过改变生成人脸的 GAN 的潜在向量来处理人脸的姿势:

3.4 变分自编码器(VAE)

变分自编码器(Variational Autoencoder,VAE)是深度学习中一种强大的生成模型,它在处理数据生成和潜在空间探索方面具有广泛的应用,可用于处理各种类型的数据并解决多样的机器学习问题,如图像生成、音频生成、数据降维、异常检测等。VAE不仅可以有效地学习数据的紧凑表示,还可以生成具有连续分布的新样本,使其在图像生成、无监督学习和生成对抗网络(GAN)等领域大放异彩。

VAE的核心思想是引入潜在变量(Latent Variables)来表示数据的分布。与传统自编码器不同,VAE并不直接学习数据的确定性表示,而是学习数据的概率分布。下面是VAE的基本原理:

  • 编码器(Encoder):编码器将输入数据映射到潜在空间中,产生潜在变量的均值和方差。这两个参数用于定义一个潜在空间中的概率分布。

  • 潜在变量采样(Sampling):从概率分布中采样一个潜在变量,这个变量代表了输入数据的潜在表示。采样过程通常使用正态分布或其他分布来实现。

  • 解码器(Decoder):解码器接受采样后的潜在变量,并将其映射回原始数据空间,生成重建数据。

  • 损失函数(Loss Function):VAE的损失函数包括两部分,一部分是重建误差,用于测量重建数据与原始数据的差异;另一部分是潜在空间的正则化项,通常使用KL散度来度量潜在变量的分布与标准正态分布之间的差异。

VAE的一个重要特点是它学习到的潜在空间是连续的,这意味着在潜在空间中的插值产生具有语义连续性的结果。例如,在图像生成任务中,通过在潜在空间中进行插值,可以平滑地从一个样本过渡到另一个样本,而不会产生不连续的效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/255214.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ROS机器人入门

http://www.autolabor.com.cn/book/ROSTutorials/ 1、ROS简介 ROS 是一个适用于机器人的开源的元操作系统。其实它并不是一个真正的操作系统,其 底层的任务调度、编译、寻址等任务还是由 Linux 操作系统完成,也就是说 ROS 实际上是运 行在 Linux 上的次级…

微信小程序开发学习(基础)

学习课程&#xff1a;2023最新零基础入门微信小程序开发_哔哩哔哩_bilibili 微信开发工具下载地址&#xff1a;微信开发者工具下载地址与更新日志 | 微信开放文档 开发文档&#xff1a;微信开放文档 创建新项目 机型&#xff1a;iPhoneX 快捷键 <view>.row{$}*8 <…

Android hilt使用

一&#xff0c;添加依赖库 添加依赖库app build.gradle.kts implementation("com.google.dagger:hilt-android:2.49")annotationProcessor("com.google.dagger:hilt-android:2.49")annotationProcessor("com.google.dagger:hilt-compiler:2.49"…

对偶问题笔记(1)

目录 1 从 Lagrange 函数引入对偶问题2. 强对偶性与 KKT 条件3. 对偶性的鞍点特征 1 从 Lagrange 函数引入对偶问题 考虑如下优化问题 { min ⁡ f 0 ( x ) s . t f i ( x ) ≤ 0 , i 1 , ⋯ , p , h j ( x ) 0 , j 1 , ⋯ , q , x ∈ Ω , \begin{align} \begin{cases}\min…

Pipelined-ADC设计一:序言

现在是2023年12月18日&#xff0c;准备开新帖&#xff0c;设计一个 流水线型 模数转换器&#xff08; Pipelined-ADC &#xff09;。记录帖&#xff0c;后续会放在咸鱼。同步记录&#xff0c;谨防盗用。 初定指标&#xff1a;12位50Mhz&#xff0c;采用2.5bit每级结构&#xff…

奇数魔方阵

魔方阵的生成方法为第0行中间位置为1 2开始的其余n*n-1个数&#xff0c;依次按以下规则存放 1.下一个元素存放在当前元素的上一行、下一列 2.如果上一行下一列已有元素&#xff0c;则下一个元素存放的位置为当前列的下一行 3.在找上一行、下一行或下一列的时候&#xff0c;把矩…

计算机组成原理——校验码

计算机组成原理学习笔记——校验码-CSDN博客 校验码——海明码及码距&#xff0c;码距_海明码的码距是多少-CSDN博客 1 下列关于码距与检错与纠错能力的描述中正确的是 &#xff08;ABC&#xff09; &#xff08;多选&#xff09; A. 码距为1的编码不具备任何检错能力 B. 码…

可能是全网最详细的线性回归原理讲解!!!

ps&#xff1a;此处的特征向量有别于线性代数中的特征向量&#xff0c;准确来讲这里的特征向量是一个样本的所有属性值。 用梯度下降慢慢逼近这个最小值点 本文图片来源于可能是全网最详细的线性回归原理讲解&#xff01;&#xff01;&#xff01;_哔哩哔哩_bilibili 可以结合…

C++学习笔记(十二)------is_a关系(继承关系)

你好&#xff0c;这里是争做图书馆扫地僧的小白。 个人主页&#xff1a;争做图书馆扫地僧的小白_-CSDN博客 目标&#xff1a;希望通过学习技术&#xff0c;期待着改变世界。 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 文章目录 前言 一、继承关系…

基于Levenberg-Marquardt算法改进的BP神经网络-公式推导及应用

Levenberg-Marquardt算法是一种用于非线性最小化问题的优化算法&#xff0c;通常用于训练神经网络。它结合了梯度下降和高斯-牛顿方法的特点&#xff0c;旨在提高收敛速度和稳定性。下面是基于Levenberg-Marquardt算法改进的反向传播&#xff08;BP&#xff09;神经网络的详细推…

[Kubernetes]3. k8s集群Service详解

在上一节讲解了k8s 的pod,deployment,以及借助pod,deployment来部署项目,但会存在问题: 每次只能访问一个 pod,没有负载均衡自动转发到不同 pod访问还需要端口转发Pod重创后IP变了,名字也变了针对上面的问题,可以借助Service来解决,下面就来看看Service怎么使用 一.Service详…

转发一篇计算机论文

最近看到一篇雷军老师在1992年的一篇计算机论文&#xff0c;个人看了对计算机科学从另外一个角度又多了一层理解&#xff0c;感觉很有收获&#xff0c;鉴于网上的图片看起来不清楚&#xff0c;本人特地到中国知网上去下载了这篇论文&#xff0c;希望给有心学习的人一点帮助。我…

Goland如何进行Debug断点调试

1. 进入编辑 2. 进行编辑 3. 调试运行 将鼠标移到按钮上&#xff0c;即显示其功能与快捷键 4. 常用调试快捷键 按键说明F7单步执行(进入方法)F8单步执行(不进入方法)F9继续执行

adb详细教程(五)-复制文件、截屏、录屏

adb对于安卓移动端来说&#xff0c;是个非常重要的调试工具。在进行安卓端的开发或测试过程中&#xff0c;有时需要了截屏或录屏&#xff0c;在设备上操作完成后再将文件导入电脑非常繁琐。​如果使用adb指令在进行截屏或录屏则会便捷许多。此篇文章介绍了如何使用adb指令进行文…

蓝桥杯time模块常用操作

#导入time模块import time #获取时间戳 start_time time.time () print ( "start_time ", start_time) time .sleep ( 3) end_time time.time () print ( "end_time ", end_time)#计算运行时间 print("运行时间 { :.0f } ".format(end_time …

[德人合科技]——设计公司 \ 设计院图纸文件数据 | 资料透明加密防泄密软件

国内众多设计院都在推进信息化建设&#xff0c;特别是在异地办公、应用软件资产规模、三维设计技术推广应用以及协同办公等领域&#xff0c;这些加快了业务的发展&#xff0c;也带来了更多信息安全挑战&#xff0c;尤其是对于以知识成果为重要效益来源的设计院所&#xff0c;防…

STL技术概述与入门

STL技术概述与入门 STL介绍STL六大组件初识容器算法迭代器1. vector存放内置数据类型2. Vector存放自定义数据类型3. Vector容器的嵌套 ✨ 总结 参考博文1&#xff1a;STL技术——STL概述和入门 参考博文2&#xff1a;&#xff1c;C&#xff1e;初识STL —— 标准模板库 STL介…

QT QIFW Linux下制作软件安装包

一、概述 和windows的操作步骤差不多&#xff0c;我们需要下装linux下的安装程序&#xff0c;然后修改config.xml、installscript.qs和package.xml文件。 QT QIFW Windows下制作安装包(一)-CSDN博客 一、下装QIFW 下装地址&#xff1a;/official_releases/qt-installer-fra…

基于YOLOv7算法和的高精度实时头盔目标检测识别系统(PyTorch+Pyside6+YOLOv7)

摘要&#xff1a;基于YOLOv7算法的高精度实时头盔目标检测系统可用于日常生活中检测与定位工人是否佩戴头盔&#xff0c;此系统可完成对输入图片、视频、文件夹以及摄像头方式的目标检测与识别&#xff0c;同时本系统还支持检测结果可视化与导出。本系统采用YOLOv7目标检测算法…

Web前端-HTML(常用标签)

文章目录 1. HTML常用标签1.1 排版标签1&#xff09;标题标签h (熟记)2&#xff09;段落标签p ( 熟记)3&#xff09;水平线标签hr(认识)4&#xff09;换行标签br (熟记)5&#xff09;div 和 span标签(重点)6&#xff09;排版标签总结 1.2 标签属性1.3 图像标签img (重点)1.4 链…