Python:(Sentinel-1)如何解析SNAP输出的HDF5文件并输出为GeoTIFF?

博客已同步微信公众号:GIS茄子;若博客出现纰漏或有更多问题交流欢迎关注GIS茄子,或者邮箱联系(推荐-见主页).
微信公众号
Python:(Sentinel-1)如何解析SNAP输出的HDF5文件并输出为GeoTIFF?

01 前言

最近在了解sentinel-1的预处理过程,但是由于影响太大了,常规的GeoTIFF无法输出预处理结果,BigTIFF输出时似乎也遇到了一些问题(好在后面解决了,所以正好做一下HDF5文件输出的TIFF文件与BigTIFF文件的对比),对于输出的HDF5文件则完全没有问题。但是问题在于HDF5文件的结构尚不了解,因此对于其中的地理信息如何提取很关键(当然你可以使用ArcGIS或者ENVI打开其中的VV和VH波段,但是都无法自动读取到其中的地理信息或者坐标系信息)。

02 解析HDF5文件

由于我处理的Sentinel-1时IW的VV和VH,因此输出的HDF5文件存在两个波段:

VV和VH相关波段信息

下方是关于这个地理信息的参数(ps:找了我好久,里面的属性信息真的太多了,而且官方文档似乎对于这个HDF5文件的结构并没有说明,真的象拔蚌了🌿):

元数据

那么我们来解释一下其中关键的8个参数:
first_near_lat = 30.710711909958782; // double
first_near_long = 106.20485428671394; // double
first_far_lat = 30.710711909958782; // double
first_far_long = 109.12878070499457; // double
last_near_lat = 28.79451557740343; // double
last_near_long = 106.20485428671394; // double
last_far_lat = 28.79451557740343; // double
last_far_long = 109.12878070499457; // double

未必准确,但是目前从得到的结果与BigTIFF对比是几乎完全一致的地理位置(如果有更详细的文档或者准确信息,请微信公众号或者邮箱联系我,这对我帮助很大)。

first 表示第一行,last表示最后一行,near表示扫描线的起点,far表示扫描线的终点。

其实这里搞不懂为什么要有四个点位的信息?一般的角点信息只需要左上和右下两个点位就足够了,算了我不是这个方向的多说无益。

那么,其实说到这里其实已经搞定了,WGS84坐标系有了,仿射参数也已经有了,VV和VH波段数据也有了。

03 代码

# @Author   : ChaoQiezi
# @Time     : 2023/12/18  8:40
# @Email    : chaoqiezi.one@qq.com

"""
This script is used to 读取HDF5、BigTIFF文件
"""

import os.path
import h5py
from osgeo import gdal, osr

# 准备
h5_path = r'H:\Datasets\Objects\TobacooLeafRecognition\Data\HDF5\S1A_IW_GRDH_1SDV_20220602T103546_20220602T103611_043483_05311F_8F62_NR_Orb_Cal_Spk_TC_dB.h5'
tiff_path = r'H:\Datasets\Objects\TobacooLeafRecognition\Data\BigTIFF\S1A_IW_GRDH_1SDV_20220602T103546_20220602T103611_043483_05311F_8F62_NR_Orb_Cal_Spk_TC_dB.tif'
out_dir = r'H:\Datasets\Objects\TobacooLeafRecognition\Data'
out_path = os.path.join(out_dir, 'vv_vh.tiff')
vh_name = 'bands/Sigma0_VH_db'
vv_name = 'bands/Sigma0_VV_db'
metadata_name = 'metadata/Abstracted_Metadata'
lon_min_name = 'first_near_long'
lon_max_name = 'last_far_long'
lat_min_name = 'last_far_lat'
lat_max_name = 'first_near_lat'
lon_res_name = 'lon_pixel_res'
lat_res_name = 'lat_pixel_res'


# 探索HDF5文件
with h5py.File(h5_path) as h5:
    vh, vv = h5[vh_name][:], h5[vv_name][:]
    metadata = h5[metadata_name]
    lon_min = metadata.attrs[lon_min_name]
    lon_max = metadata.attrs[lon_max_name]
    lat_min = metadata.attrs[lat_min_name]
    lat_max = metadata.attrs[lat_max_name]
    lon_res = metadata.attrs[lon_res_name]
    lat_res = metadata.attrs[lat_res_name]
# 提取栅格信息
rows, cols = vv.shape
transform = [lon_min, lon_res, 0, lat_max, 0, -lon_res]
# 定义地理信息(WGS84)
srs = osr.SpatialReference()
srs.ImportFromEPSG(4326)  # WGS84
# 输出
driver = gdal.GetDriverByName('GTiff')
ds = driver.Create(out_path, cols, rows, 2, gdal.GDT_Float32)
ds.SetProjection(srs.ExportToWkt())  # 设置坐标系
ds.SetGeoTransform(transform)  # 设置仿射参数
[ds.GetRasterBand(_ix+1).WriteArray(_band) for _ix, _band in enumerate([vv, vh])]  # 写入数据
ds.FlushCache()
ds = None
# 探索BigTIFF文件
ds = gdal.Open(tiff_path)
bands = ds.ReadAsArray()
proj = ds.GetProjection()
tiff_transform = ds.GetGeoTransform()
print('HDF5的proj: {}'.format(srs.ExportToWkt()))
print('BigTIFF的proj: {}'.format(proj))
print('HDF5的仿射变换参数: {}'.format(transform))
print('BigTIFF的proj: {}'.format(tiff_transform))

输出:

HDF5的proj: GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]

BigTIFF的proj: GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]

HDF5的仿射变换参数: [106.20485428671394, 8.983152841195215e-05, 0, 30.710711909958782, 0, -8.983152841195215e-05]

BigTIFF的proj: (106.20485428671394, 8.983152841195215e-05, 0.0, 30.710711909958782, 0.0, -8.983152841195215e-05)

基本上一致

HDF5输出与BigTIFF对比

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/255099.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL安装——备赛笔记——2024全国职业院校技能大赛“大数据应用开发”赛项——任务2:离线数据处理

MySQLhttps://www.mysql.com/ 将下发的ds_db01.sql数据库文件放置mysql中 12、编写Scala代码,使用Spark将MySQL的ds_db01库中表user_info的全量数据抽取到Hive的ods库中表user_info。字段名称、类型不变,同时添加静态分区,分区字段为etl_da…

TCP单人聊天

TCP和UDP两种通信方式它们都有着自己的优点和缺点 这两种通讯方式不通的地方就是TCP是一对一通信 UDP是一对多的通信方式 TCP通信 TCP通信方式呢 主要的通讯方式是一对一的通讯方式,也有着优点和缺点 它的优点对比于UDP来说就是可靠一点 因为它的通讯方式是需…

谈谈你知道的设计模式?请手动实现单例模式 , Spring 等框架中使用了哪些模式?

文章目录 谈谈你知道的设计模式请手动实现单例模式Spring等框架中使用哪些设计模式?设计模式分类 谈谈你知道的设计模式 我们知道 InputStream 是一个抽象类,标准类库中提供了 FileInputStream、ByteArrayInputStream 等各种不同的子类,分别…

8款AI写作神器,轻松创作高质量内容

随着AI技术的不断发展,AI生成文案平台也逐渐成为一种新型的写作工具。这些平台利用先进的算法和自然语言处理技术,能够快速生成高质量的文案内容。不仅可以提高写作效率,还可以帮助创作者更好地表达思想和创意。AIGCer介绍几款好用的AI写作工…

什么?Figma 的 fig 文件格式居然被破解出来了

大家好,我是前端西瓜哥。 上周图形编辑器交流群里有人问,对于 Figma 导出的 fig 文件,该如何解析其格式,拿到可读数据。 经过群友的一番讨论,这个问题最后算是解决了。 fig 文件 导出 Figma 的设计文件&#xff0c…

智能优化算法应用:基于人工电场算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于人工电场算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于人工电场算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.人工电场算法4.实验参数设定5.算法结果6.…

产品调研——AI平台

本文主要记录了对腾讯云-TIONE平台、华为云-ModelArt等主流AI平台的产品调研。 交互式建模 简单点说就是提供了带训练资源的云IDE,使用形态包括Notebook、VsCode等。 腾讯云-TI平台 TI平台将tensorflow、pytorch、spark环境等均集成到一个Notebook容器中&#xf…

深入理解强化学习——马尔可夫决策过程:价值迭代-[价值迭代算法]

分类目录:《深入理解强化学习》总目录 文章《深入理解强化学习——马尔可夫决策过程:价值迭代-[最优性原理]》和文章《深入理解强化学习——马尔可夫决策过程:价值迭代-[确认性价值迭代]》介绍了价值迭代的基础知识,本文将介绍价值…

AX7A200教程(9): ov5640摄像头输出显示720p视频

一,功能框图 ov5640摄像头视频通过ddr3缓存后,最后使用hdmi接口进行输出显示 二,摄像头硬件说明 2.1,像头硬件管脚 如下图所示,一共18个管脚 2.2,摄像头电源初始化时序 因这个ov5640摄像头是买的老摄像…

制造企业MES管理系统可以和AI结合应用吗

在当今的数字化时代,人工智能AI和MES生产管理系统的结合将成为制造企业发展的重要趋势。这种结合可以为制造企业带来许多优势,如提高生产效率、降低成本、优化资源利用等。本文将探讨MES管理系统和AI的结合以及它们在制造企业中的应用,并分析…

【JavaWeb学习笔记】11 - WEB工程路径专题

一、工程路径问题 1.引入该问题 通过这几个去访问很麻烦 二、工程路径解决方案 1.相对路径 1.说明:使用相对路径来解决,一 个非常重要的规则:页面所有的相对路径,在默认情况下,都会参考当前浏览器地址栏的路径http:/ /ip:port/工程名/来进…

BM61 矩阵最长递增路径

题目 矩阵最长递增路径 给定一个 n 行 m 列矩阵 matrix ,矩阵内所有数均为非负整数。 你需要在矩阵中找到一条最长路径,使这条路径上的元素是递增的。并输出这条最长路径的长度。 这个路径必须满足以下条件: 1. 对于每个单元格,你…

【基于APB总线的DES实现】

基于APB总线的DES实现 本文内容摘要APB介绍仿真结果整体仿真写入数据DES加密部分DES加密读出密文 整体代码 本文内容摘要 本文是设计一个可兼容APB总线的DES加密协处理器,用来将DES加密模块与APB总线进行对接,使总线发送来的数据可以正常写入并进行加密后…

十四、YARN核心架构

1、目标 (1)掌握YARN的运行角色和角色之间的关系 (2)理解使用容器做资源分配和隔离 2、核心架构 (1)和HDFS架构的对比 HDFS架构: YARN架构:(主从模式) &…

分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】

分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】 目录 分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现AOA-SVM算术优化支持向量机的数据分类预测…

Note3---初阶二叉树~~

目录​​​​​​​ 前言🍄 1.树概念及结构☎️ 1.1 树的概念🎄 1.2 树的相关概念🦜 1.2.1 部分概念的加深理解🐾 1.2.2 树与非树🪴 1.3 树的表示🎋 1.4 树在实际中的运用(表示文件系统…

Leetcode—11.盛最多水的容器【中等】

2023每日刷题&#xff08;六十三&#xff09; Leetcode—11.盛最多水的容器 实现代码 #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MIN(a, b) ((a) < (b) ? (a) : (b)) int maxArea(int* height, int heightSize) {int left 0, right heightSize - 1;int m…

屏幕超时休眠-Android13

屏幕超时休眠-Android13 1、设置界面1.2 属性值1.2.1 默认值1.2.2 最小值限制 1.3 属性值疑问 Settings.System.SCREEN_OFF_TIMEOUT 2、超时灭屏2.1 锁定屏幕的超时2.2 屏幕灭屏的超时 3、永不休眠* 关键日志 1、设置界面 packages/apps/Settings/src/com/android/settings/dis…

八.创建和管理表

目录 1. 基础知识1.1 一条数据存储的过程1.2 标识符命名规则1.3 MySQL中的数据类型 2. 创建和管理数据库2.2 使用数据库2.3 修改数据库 3. 创建表3.1 创建方式13.2 创建方式23.4 查看数据表结构 4. 修改表4.1 追加一个列4.2 修改一个列4.3 重命名一个列4.4 删除一个列 5. 重命名…

【Docker五】使用Harbor搭建Docker私有仓库

目录 一、harbor概述 1、harbor概念&#xff1a; 2、harbor的特性 3、harbor的组件&#xff1a; 二、harbor实验&#xff1a; 1、搭建harbor 2、远程主机使用docker-harbor&#xff1a; 3、镜像同步&#xff1a; 一、harbor概述 1、harbor概念&#xff1a; harbor&…