【深度学习目标检测】九、基于yolov5的路标识别(python,目标检测)

YOLOv5是目标检测领域一种非常优秀的模型,其具有以下几个优势:

1. 高精度:YOLOv5相比于其前身YOLOv4,在目标检测精度上有了显著的提升。YOLOv5使用了一系列的改进,如更深的网络结构、更多的特征层和更高分辨率的输入图像,以提升精度。

2. 高效性能:YOLOv5在目标检测任务中具有很高的处理速度和实时性。相比于其他目标检测模型,YOLOv5采用了更少的计算量和参数数量,因此它在目标检测任务中具有更快的推理速度。

3. 简单易用:YOLOv5是一个开源项目,源代码公开,并且提供了预训练的模型权重。这使得使用YOLOv5进行目标检测变得非常方便,无需从头开始训练模型,只需进行适当的微调即可。

4. 多平台适用:YOLOv5可以在多种平台上运行,包括PC端、嵌入式设备和移动设备等。这使得YOLOv5可以在各种场景下应用,如自动驾驶、智能安防、人脸识别等。

5. 多功能:YOLOv5可以检测和分类多个不同的目标类别,包括人、车辆、动物等。此外,YOLOv5还可以检测出目标的位置和大小,并提供相应的置信度。

总之,YOLOv5具有高精度、高效性能、简单易用、多平台适用和多功能等优势,使其成为目标检测领域中的一种前沿模型。

参考:【深度学习目标检测】六、基于深度学习的路标识别(python,目标检测,yolov8)

本文介绍了基于Yolov5的路标检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

效果如下图:

一、安装YoloV5

yolov5和yolov8的开发团队相同,安装方法一样。官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

路标检测数据集,检测4种路标:speedlimit,crosswalk,trafficlight,stop。总共877张图,其中训练集701张图、测试集176张图。

示例图片如下:

原始的数据格式为COCO格式,本文提供转换好的yolov5格式数据集,可以直接放入yolov5中训练,数据集地址(yolov5和yolov8的格式一样):路标数据集yolov5格式

三、模型训练

1、数据集配置文件

在ultralytics/ultralytics/cfg/datasets目录下添加roadsign.yaml,添加以下内容(path修改为自己的路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)
 
 
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/roadsign/roadsign-yolov8  # 修改为自己的数据路径
train: images/train 
val: images/val  
test: images/val 
 
# Classes
names:
  # 0: normal
  0: speedlimit  # speedlimit,crosswalk,trafficlight,stop
  1: crosswalk
  2: trafficlight
  3: stop
2、修改模型配置文件

在ultralytics/ultralytics/cfg/models/v5目录下添加yolov5_roadsign.yaml,添加以下内容:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5

# Parameters
nc: 4  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 1024]
  l: [1.00, 1.00, 1024]
  x: [1.33, 1.25, 1024]

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)
  ]
3、训练模型

使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:

yolo detect train project=deploy name=yolov5_roadsign exist_ok=False optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/v5/yolov5_roadsign.yaml  data=ultralytics/ultralytics/cfg/datasets/roadsign.yaml
4、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=deploy/yolov5_roadsign/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/roadsign.yaml

精度如下图:

四、推理

训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:

from PIL import Image
from ultralytics import YOLO

# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')

# 在'bus.jpg'上运行推理
image_path = 'road423.png'
results = model(image_path)  # 结果列表

# 展示结果
for r in results:
    im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()  # 显示图像
    im.save('results.jpg')  # 保存图像

本教程训练好的权重和推理代码、示例代码连接:推理代码和训练好的权重

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/254701.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VSCode 配置自动生成头文件

相关文章 VSCode 开发C/C实用插件分享——codegeex VSCode 开发C/C实用插件分享——koroFileHeader VSCode 配置自动生成头文件 一、snippets二、配置步骤三、效果展示 一、snippets 相信大家对C、C都头文件都不陌生,都会发现每个头文件都会包括下面的这些格式&…

【PostgreSQL】从零开始:(三)PgAdmin4下载与安装

【PostgreSQL】从零开始:(三)PgAdmin4下载与安装 pgAdmin简介liunx下部署通过yum部署pgAdmin4(6.21)1.安装依赖包2.永久停止防火墙3.配置pgadmin4项目源4.下载并安装pgAdmin45.执行初始化命令6.访问我们的网站 liunx下通过python方…

思码逸企业版 4.0 特性之三:研发效能数据的智能化分析与解读

建立研发效能体系,数据的收集与清理并建立指标体系只是第一步,如果不针对这些指标采集到的数据进行分析,那就无法做到研发效能度量闭环,那么指标体系也就毫无意义。所以研发效能分析在整个研发效能改进闭环中占据非常重要的一环。…

前端开发中的webpack打包工具

前端技术发展迅猛,各种可以提高开发效率的新思想和框架层出不穷,但是它们都有一个共同点,即源代码无法直接运行,必须通过转换后才可以正常运行。webpack是目前主流的打包模块化JavaScript的工具之一。 本章主要涉及的知识点有&am…

算法-动态规划

动态规划算法 应用场景-背包问题 介绍 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题&#xff0…

【运维笔记】mvware centos挂载共享文件夹

安装mvware-tools 这里用的centos安装 yum install open-vm-tools 设置共享文件夹 依次点击:选项-共享文件夹-总是启用-添加,安装添加向导操作添加自己想共享的文件夹后。成功后即可在文件夹栏看到自己共享的文件夹 挂载文件夹 临时挂载 启动虚拟机&…

视频推拉流EasyDSS互联网直播/点播平台构建户外无人机航拍直播解决方案

一、背景分析 近几年,国内无人机市场随着航拍等业务走进大众,出现爆发式增长。无人机除了在民用方面的应用越来越多,在其他领域也已经开始广泛应用,比如公共安全、应急搜救、农林、环保、交通 、通信、气象、影视航拍等。无人机使…

什么是工业互联网平台?

1.什么是工业互联网平台? 1.1 工业互联网平台的定义 工业互联网平台是一个连接设备与服务、数据与人的跨行业、跨领域的全新工业平台。工业互联网平台利用了互联网、物联网、大数据、AI等技术,集成各类工业设备,不断采集和分析数据&#xff…

数据库动态视图和存储过程报表数据管理功能设计

需求:需要将ERP的报表数据挪到OA中,但是OA表单设计不支持存储过程动态传参,所以需要设计一个系统,可以手动配置,动态显示原本ERP的报表数据,ERP报表是存在数据库的视图和存储过程中 思路:因为E…

Which local search operator best 4 SPVRPTW:or and 2-opt*

这篇文献的研究背景是对车辆路径问题(VRP)的局部搜索移动算子进行测试,其中包括分割配送和时间窗口的车辆路径问题。 VRP涉及根据各种约束条件为客户提供货物的最优路线。当配送的时间窗口和分割配送选项被引入时,问题变得更加复…

Kotlin 笔记 -- Kotlin 语言特性的理解(一)

函数引用、匿名函数、lambda表达式、inline函数的理解 双冒号对函数进行引用的本质是生成一个函数对象只有函数对象才拥有invoke()方法,而函数是没有这个方法的kotlin中函数有自己的类型,但是函数本身不是对象,因此要引用函数类型就必须通过双…

arcgis javascript api4.x加载天地图cgs2000坐标系

需求&#xff1a;arcgis javascript api4.x加载天地图cgs2000坐标系 效果&#xff1a; 示例代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"wid…

vscode使用remote ssh到server上 - Node进程吃满CPU

起因&#xff1a;Node进程吃满CPU 分析 我发现每次使用vscode的remote插件登陆到server后&#xff0c;就会出现node进程&#xff0c;不太清楚干什么用的&#xff0c;但是绝对和它有关。 查找原因 首先找到了这篇文章&#xff0c;解决了rg进程的问题&#xff1a; https://blo…

克服端口顺序影响,使用PCAN实现固定设备ID/通道分配

来源&#xff1a;虹科智能互联 虹科干货 | 克服端口顺序影响&#xff0c;使用PCAN实现固定设备ID/通道分配 原文链接&#xff1a;https://mp.weixin.qq.com/s/Ik2fp9sWyI9MiQOOHO1dCA 欢迎关注虹科&#xff0c;为您提供最新资讯&#xff01; 导读 多设备协同工作是常见的需求…

Mac managing Multiple Python Versions With pyenv 【 mac pyenv 管理多个python 版本 】

文章目录 1. 简介2. 安装2.1 brew 安装 pyenv2.2 脚本安装 3. pyenv 安装 Python4. 卸载 python5. 管理 python 1. 简介 Pyenv 是一个用于管理和切换多个 Python 版本的工具。它允许开发人员在同一台计算机上同时安装和使用多个不同的 Python 版本&#xff0c;而无需对系统进行…

Apache Seatunnel本地源码构建编译运行调试

Apache Seatunnel本地源码构建编译运行调试 文章目录 1. 环境准备1.1 Java环境1.2 Maven1.3 IDEA1.4 Docker环境1.5 Mysql8.0.281.6 其它环境准备 2. 源码包下载3. idea项目配置3.1 项目导入3.2 maven配置3.3 项目JDK配置3.4 项目启动参数配置3.4.1 seatunnel项目启动参数配置3…

SpringBoot+WebSocket

SpringBootWebSocket 1.导入依赖&#xff1a; -- Spring Boot 2.x 使用 javax.websocket-- Spring Boot 3.x 使用 jakarta.websocket<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId&g…

git基础命令(小白适合看)

作者&#xff1a;爱塔居 欢迎大佬指正 1.git add 跟上文件地址 要注意斜杆&#xff0c;然后文件地址就是我们修改文件的地址。 就比如git add xx/xx/xx.x&#xff0c;记得加后缀&#xff0c;然后如果是几个文件&#xff0c;就加空格 例如 git add xx/xx/xx.x yy/yy/yy.y 2.…

机器翻译:跨越语言边界的智能大使

导言 机器翻译作为人工智能领域的瑰宝&#xff0c;正在以前所未有的速度和精度&#xff0c;为全球沟通拓展新的可能性。本文将深入研究机器翻译的技术原理、应用场景以及对语言交流未来的影响。 1. 简介 机器翻译是一项致力于通过计算机自动将一种语言的文本翻译成另一种语言的…

BearPi Std 板从入门到放弃 - 先天神魂篇(3)(RT-Thread I2C设备 读取光照强度BH1750)

简介 使用BearPi IOT Std开发板及其扩展板E53_SC1&#xff0c; SC1上有I2C1 的光照强度传感器BH1750 和 EEPROM AT24C02&#xff0c; 本次主要就是读取光照强度; 主板: 主芯片: STM32L431RCT6LED : PC13 \ 推挽输出\ 高电平点亮串口: Usart1I2C使用 : I2C1E53_SC1扩展板 : LE…