Zemax Lumerical | 二维光栅出瞳扩展系统优化

简介

本文提出并演示了一种以二维光栅耦出的光瞳扩展(EPE)系统优化和公差分析的仿真方法。

在这个工作流程中,我们将使用3个软件进行不同的工作 ,以实现优化系统的大目标。首先,我们使用 Lumerical 构建光栅模型并使用 RCWA 进行仿真。其次,我们在 OpticStudio 中构建完整的出瞳扩展系统,并动态链接到 Lumerical 以集成精确的光栅模型。最后,optiSLang 用于通过修改光栅模型来全面控制系统级优化,以实现整个出瞳扩展系统所需的光学性能。

本篇文章将分为上下两个部分。(联系我们获取文章附件)

概述

我们将首先在 Lumerical 和 OpticStudio 中构建仿真系统,它们是动态链接的。

然后,OpticStudio 通过 Python 节点链接到 optiSLang 进行优化,如图1所示。

图1 Lumerical 通过动态链接到 OpticStudio,OpticStudio 通过 Python 节点链接到 optiSLang,优化由 optiSLang 控制。

如图 2 所示,EPE 系统包括两个用于耦入和耦出的光栅。耦出光栅分为几个区,如左侧所示。每个区都将经过优化,以具有不同的光栅形状。右图显示了光在 k 空间中的传播的变化情况。

图 2 光栅布局图以及光线在K空间的传播

第 1 步:系统设置 (Lumerical)

打开附件中的 ZAR 文件时,两个光栅文件会被提取到设置的路径中。第一个光栅如图 3 所示,它是耦入光栅中使用的二元光栅。该光栅是固定的,在优化过程中不会改变。

图 3 耦入光栅结构为二元光栅。

第二个 .fsp 文件如图  4 所示,它是一个具有 7 个变量的平行四边形柱体。在优化期间,耦出中的每个区都将使用不同的变量组合集进行优化  。有关优化设置的更多信息将在优化设置部分中进行说明。

图 4 耦出光栅中的结构为平行四边形支柱。

这两个.fsp文件都是用动态链接的形式在 OpticStudio 中用于模拟完整的EPE系统。

第 2 步:系统设置(OpticStudio)

如图5所示,在该系统中,准直光束入射到耦入光栅上,通过波导传播,并与第二个光栅耦合。眼盒位于第二个光栅的较远部分。优化的目标是优化眼盒接收的均匀性和总功率。

图 5 初始EPE系统和眼盒辐照度。

在附件中有一个 OpticStudio 中建立的整个EPE系统的 zar 文件。如图  6 所示,仅构建了第二个光栅一半的区域。这是因为系统具有对称性。从图 7 可以看出,探测器的参数镜像设置为  1,这意味着在光线追迹期间,将始终对-x和+x部分进行镜像。这样一来,我们可以只用一半的光线获得相同的模拟结果。

图 6 OpticStudio 中的 EPE 系统设置。

图7 探测器的镜像参数设置为 1,这意味着该探测器在 x 方向上镜像。

可以看出,  系统中的所有光栅物体都已使用动态链接 DLL 进行设置,如图  8所示。 

图 8 为  EPE 系统中的光栅加载动态链接 DLL。

第3步:优化设置(optiSLang)

3-1.Python 用于评估系统

附件中包含了一个 python 文件 EPE_2D_for_optiSLang.py,用于将 optiSLang 链接到OpticStudio。使用python代码将  Ansys optiSLang 附带的优化器与求解器Ansys Zemax OpticStudio + Ansys Lumerical 链接非常有用。优势在于可以在每个优化周期中进行数据的预处理跟后处理,灵活性非常高。本章节会对代码结构进行解释。

代码的基本结构首先由 OpticStudio 中的按钮生成,如图  9 所示。 

图 9 生成 Python 交互式扩展代码的样板。

另外几个模块被导入到样板中。模块 numpy,scipy 用于对来自眼盒的辐照度数据进行后数据处理。模块matplotlib用于在眼盒上绘制和导出辐照度以供以后查看。导入 time 和 random 模块,以便计时器跟踪计算时间。

通过尝试读取变量 OSL_WORKING_DIR,我们可以知道这个 Python 代码是由  optiSLang 调用还是手动调用。当 optiSLang 调用 Python代码时,将创建一些称为环境变量的变量来传递一些 optiSLang 信息。即使这些变量未在 Python 文件中定义,当 optiSLang 调用代码时,它们是可用的。 

在这个 Python 代码中,有32个变量,如 clen1、h2、rot4、w1 和 power,用于优化,需要由 optiSLang 定义。我们会将这些变量设置为 optiSLang 中的参数,在灵敏度分析或优化时,optiSLang将自动改变它们的值。如果我们不是从 optiSLang 直接运行这个 Python 代码,那么这些变量的值将是常量,如下面的代码所示。

如图10所示,每个区的光栅参数是通过预设的4个角的数据通过插值来确定的。其中 ν 是 dC、dR、dL、θC、θR、θL 、h ,n 是 1,2,3,4,对应于 4 个角。通过这个公式,每个区上的7个光栅参数可以通过具有一定权重(wn)和非线性值(p)的4个角的参数来控制。

图 10  从 4 个角插值的各个区的参数计算。

optiSLang 按照预定义的优化算法改变这些参数。不同的参数值被设置到 python 代码中,这将进一步设置 OpticStudio 中每个光栅块的参数。在这个过程中,Python代码扮演着将这些变量转换为 OpticStudio 中精确参数的工作。只有当我们使用 optiSLang 而不是 OpticStudio 中的内置优化器优化系统时,这种预数据处理才有可能。通过这种方式,optiSLang 可以根据一些未直接暴露在OpticStudio UI中的虚拟或高级变量来优化系统。

设置参数后,我们使用以下代码段追迹光线。

使用 optiSLang 优化系统的另一个好处是数据后处理。在这个优化过程中,我们不会直接优化眼盒上的辐照度分布。我们首先使用瞳孔函数对辐照度分布进行卷积,如图11所示,然后将优化目标设置为该卷积结果的均匀性。这个结果的x和y轴可以解释为人眼在眼盒中的偏移。z轴是人眼看到的平均辐照度。

图 11 使用瞳孔函数对辐照度分布进行卷积.

根据卷积结果,我们可以计算对比度 、总功率和均匀性,如下所示。

这些标准的代码定义如下。在这种情况下,我们主要希望针对 Contrast 和 Total Power 进行优化。均匀性的功能类似于对比度,两者都希望眼盒上的辐照度均匀。尽管它们用于相同的目标,但它们使用不同的定义,在这里我们考虑两者。

Python 代码的最后一部分,如下所示,绘制了眼盒辐照度的结果及其卷积结果。然后导出图片。这对于用户直接在 optiSLang 后处理中检查每个优化系统的辐照度分布非常有用。

进一步的设置详解我们会在后续的文章中,进行介绍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/25451.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

(双指针 ) 18. 四数之和 ——【Leetcode每日一题】

❓18. 四数之和 难度:中等 给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重…

不愧是阿里,扣的真细。

铜三铁四已经过去了,今天的行情虽然没有以前好,但是相比去年来说也算是好了一些了。有一些人已经在这个招聘季拿到了不错的Offer了。 今天给大家分享一份面经,今天这位朋友的背景是Java五年本,2023年前被毕业后投入了面试大军怀抱…

融合改进Sine混沌映射的新型粒子群优化算法(NIPSO)-附代码

融合改进Sine混沌映射的新型粒子群优化算法(NIPSO) 文章目录 融合改进Sine混沌映射的新型粒子群优化算法(NIPSO)1.粒子群优化算法2. 改进粒子群优化算法2.1 改进的 Sine 混沌映射2.2 粒子群改进 3.实验结果4.参考文献5.Matlab代码6.Python代码 摘要:为了应对传统粒子…

OpenGl之摄像机

文章目录 摄像机/观察空间摄像机位置摄像机方向右轴上轴 Look At自由移动移动速度鼠标输入缩放摄像机源码 OpenGL本身没有摄像机(Camera)的概念,但我们可以通过把场景中的所有物体往相反方向移动的方式来模拟出摄像机,产生一种我们在移动的感觉&#xff…

第12届蓝桥杯Scratch省赛真题集锦

编程题 第 1 题 问答题 下雨 题目说明 编程实现: 下雨。 具体要求: 1).点击绿旗,角色与背景如下图所示呈现在对应位置; 2).小猫说:“快下雨了,赶快回家”,小狗说:“我再玩一会”; 3).开始下雨,雨滴持续下落, 4).小猫躲在亭子里,雨滴在小猫和亭子后落下, 5).小狗在雨中…

java-基础语法(二)

java-基础语法(二) 一、流程控制语句 1.1 流程控制语句分类 顺序结构 分支结构(if, switch) 循环 结构(for, while, do…while) 1.2 顺序结构 顺序结构执行流程图: 1.3 分支结构之if语句 if语句格式1 格式:if (关系表达式) {语句体; }执行流程&…

【Jenkins+Ant+Jmeter】持续集成接口测试平台搭建

一、环境准备: 1、JDK:Java Downloads | Oracle 2、Jmeter:Apache JMeter - Download Apache JMeter 3、Ant:Apache Ant - Binary Distributions 4、Jenkins:Jenkins 二、Jemter脚本准备: 1、脚本目录&a…

云服务器和专用服务器之间的区别

在当今数字化时代,服务器是构建和支持各种应用和服务的基础设施之一。随着技术的发展和需求的增加,出现了不同类型的服务器,其中最常见的是云服务器和专用服务器。本文将详细介绍云服务器和专用服务器之间的区别,以帮助您更好地了…

多线程安全的案例展示与解决方案

一、概念 1. 什么是线程安全 当多个线程访问一个对象时,如果不用考虑这些线程在运行时环境下的调度和交替执行,也不需要进行额外的同步,或者在调用方进行任何其他的协调操作,调用这个对象的行为都可以获得正确的结果&#xff0c…

【Linux】iptables防火墙

文章目录 一、Linux防火墙基础1.Linux防火墙概术2.netfilter/iptables3.四表五链4.规则链之间的匹配顺序 二、iptables 安装1.常用的控制类型2.常用的管理选项 三、示例演示1.添加新的规则2.查看规则列表3.删除规则4.清空规则 四、规则的匹配1.通用匹配2.隐含匹配3.显式匹配 一…

Mybatis generator

文章目录 依赖式使用引入依赖配置文件设置生成使用中出现的异常 Mybatis中javaType和jdbcType对应关系int、bigint、smallint 和 tinyint是使用整数数据的精确数字数据类型。 插件式使用添加依赖和插件创建逆向工程的配置文件执行MBG插件的generate目标执行结果 逆向工程&#…

shell SNAT与DNAT

文章目录 SNATSNAT原理与应用SNAT实验 DNATDNAT原理与应用DNAT实验 SNAT SNAT原理与应用 SNAT 应用环境:局域网主机共享单个公网IP地址接入Internet(私有不能早Internet中正常路由) SNAT原理:修改数据包的源地址。 SNAT转换前提…

C++进阶 —— lambda表达式(C++11新特性)

目录 一,模板函数sort 二,lambda表达式 一,模板函数sort 在C98中,如对一个数据集合中的元素进行排序,可使用模板函数sort,如元素为自定义类型,需定义排序时的比较规则;随着C的发展…

intel驱动程序和支持助理常见问题:不识别、无法检测等问题解决方法

起因: wifi驱动有点问题,于是想着更新一下官方的驱动,下载intel驱动程序和支持助理并安装完成后,打开成了这个样子,刷新多少次都没有用,就是不识别。 解决方法: 经过一波胡乱操作&#xff0…

【Linux入门】Linux权限及管理

【Linux入门】Linux权限及管理 目录 【Linux入门】Linux权限及管理Linux权限管理文件访问者的分类文件类型和访问权限(事物属性) 文件权限值的表示方法文件访问权限的相关设置方法目录的权限实现共享目录粘滞位目录权限总结 作者:爱写代码的刚…

算法基础学习笔记——⑫最小生成树\二分图\质数\约数

✨博主:命运之光 ✨专栏:算法基础学习 目录 ✨最小生成树 🍓朴素Prim 🍓Kruskal算法 ✨二分图 🍓匈牙利算法 ✨质数 🍓(1)质数的判定——试除法 🍓(2&…

(转载)基于遗传算法的多目标优化算法(matlab实现)

1 理论基础 1.1 多目标优化及Pareto最优解 多目标优化问题可以描述如下: 其中,f(x)为待优化的目标函数;x为待优化的变量;Ib和ub分别为变量x的下限和上限约束;Aeq*xbeq为变量x的线性等式约束;A*x≤b为变…

数据库作业

目录 数据库teaching中的表结构和表记录。 问题: 答案: 数据库teaching中的表结构和表记录。 (1)学生信息表student    #student表结构      create table if not exists student (      studentno char(11) not…

c++ 11标准模板(STL) std::map(六)

定义于头文件<map> template< class Key, class T, class Compare std::less<Key>, class Allocator std::allocator<std::pair<const Key, T> > > class map;(1)namespace pmr { template <class Key, class T, clas…

【Linux驱动】认识驱动(驱动的概念、驱动分类)

目录 1、什么是驱动&#xff1f; 2、应用程序调用驱动基本流程 3、file_operations 结构体 4、驱动的分类 1、什么是驱动&#xff1f; 驱动就是一段程序&#xff0c;能够获取外设或者传感器数据、控制外设。驱动获取到的数据会提交给应用程序。 在 Linux 中一切皆为文件&…