人工智能中的核心概念

1 概述

人工智能英文缩写为AI,是一种由人制造出来的机器,该机器可以模仿人的思想和行为,从而体现出一种智能的反应。

人工智能的产业链分为基础层、技术层、应用层三个层次。

  • 基础层包括:芯片、大数据、算法系统、网络等多项基础设施,为人工智能产业奠定网络、算法、硬件铺设、数据获取等;

  • 技术层包括:计算机视觉、语音语义识别、机器学习、知识图谱等;

  • 应用层包括:金融、安防、智能家居、医疗、机器人、智能驾驶、新零售等。

近年来,由于大数据的积累、理论算法的革新、计算能力的不断提高以及网络设备的不断完善,使得人工智能的研究与应用已经进入了一个崭新的发展阶段。

2 人工智能发展的三大基石

2.1 摩尔定律

当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。换言之,每一美元所能买到的电脑性能,将每隔18-24个月翻一倍以上。这一定律揭示了信息技术进步的速度。

摩尔定律以Intel共同创办人Gordon Moore命名。数年以前,先进的系统设计只能在理论上成立但无法实现,因为它所需要的计算机资源过于昂贵或者计算机无法胜任。今天,我们已经拥有了实现这些设计所需要的计算资源。举个梦幻般的例子,现在最新一代微处理器的性能是1971年第一代单片机的400万倍。

2.2 数据处理

得益于互联网、社交媒体、移动设备和廉价的传感器,这个世界产生的数据量急剧增加。随着对这些数据价值的不断认识,用来管理和分析数据的新技术也得到了发展。大数据是人工智能发展的助推剂,这是因为有些人工智能技术使用统计模型来进行数据的概率推算,比如图像、文本或者语音,通过把这些模型暴露在数据的海洋中,使它们得到不断优化,或者称之为“训练”——现在这样的条件随处可得。

3.3 互联网和云计算

和大数据现象紧密相关,互联网和云计算可以被认为是人工智能基石有两个原因,第一,它们可以让所有联网的计算机设备都能获得海量数据。这些数据是人们推进人工智能研发所需要的,因此它可以促进人工智能的发展。第二,它们为人们提供了一种可行的合作方式来帮助人工智能系统进行训练。雇佣成千上万的人来描绘数字图像,这就使得图像识别算法可以从这些描绘中进行学习。

3 人工智能三大要素

3.1 算法

这个要素应该是三个核心要素中最重要的,没有算法的突破,AI是不可能发展到今天的,这个算法的突破主要是归根于深度学习相关的算法突破,这个算法是借鉴了人类的思考方式,通过多层次的神经网络算法来实现。现在几乎所有的AI算法都是基于深度学习算法或者变种实现的。

3.2 算力

算力是指计算机的处理的能力,由于深度学习的算法,涉及非常多的参数(不同功能的AI算法参数的个数是不同的),有的AI算法的参数达到几百亿。由于需要通过训练去调整AI的各个参数,因此计算量是很大的,需要高性能的计算机去实现。同时神经网络的算法是可以并行计算的,采用支持并行计算的处理器来实现AI的训练是有优势的。算力成为推动人工智能技术进步的重要因素。

3.3 数据

数据是用于训练AI的,也就是AI算法通过大量的数据去学习AI中算法的参数与配置,使得AI的预测结果与实际的情况越吻合。用于AI的数据越多,AI的算法能力越强。这里说的数据是指经过标注的数据,不是杂乱的数据。所谓经过标注的数据是指有准确答案的数据。比如要训练AI的识别手写数字的能力,必须要有很多写了数字的图片,同时每张图片上的数字是有准确标准答案的。AI训练的过程就是让计算机去去识别图中的数字并与标准答案去比较,经过反复的调整,AI就可以非常准确地识别出其中的数字。数据在人工智能中是不可或缺的,是培养和训练机器学习和深度学习模型的关键资源。

4 人工智能应用

4.1 感知能力(Perception)

指的是人类通过感官所收到环境的刺激,察觉消息的能力,简单的说就是人类五官的看、听、说、读、写等能力,学习人类的感知能力是AI目前主要的焦点之一,包括:

  • “看”:电脑视觉(Computer Vision)、图像识别(Image Recognition)、人脸识别(Face Recognition)、对象侦测(Object Detection)。

  • “听”:语音识别(Sound Recognition)。

  • “说”:语音生成(Sound Generation)、文本转换语音(Text-to-Speech)。

  • “读”:自然语言处理(Natural Language Processing,NLP)、语音转换文本(Speech-to-Text)。

  • “写”:机器翻译(Machine Translation)。

4.2 认知能力(Cognition)

指的是人类通过学习、判断、分析等等心理活动来了解消息、获取知识的过程与能力,对人类认知的模仿与学习也是目前AI第二个焦点领域,主要包括:

  • 分析识别能力:例如医学图像分析、产品推荐、垃圾邮件识别、法律案件分析、犯罪侦测、信用风险分析、消费行为分析等。

  • 预测能力:例如AI执行的预防性维修(Predictive Maintenance)、智能天然灾害预测与防治。

  • 判断能力:例如AI下围棋、自动驾驶车、健保诈欺判断、癌症判断等。

  • 学习能力:例如机器学习、深度学习、增强式学习等等各种学习方法。

4.3 创造力(Creativity)

指的是人类产生新思想,新发现,新方法,新理论,新设计,创造新事物的能力,它是结合知识、智力、能力、个性及潜意识等各种因素优化而成,这个领域目前人类仍遥遥领先AI,但AI也试着急起直追,主要领域包括:AI作曲、AI作诗、AI小说、AI绘画、AI设计等。

5 机器学习、深度学习、人工智能三者之间

5.1 机器学习(Machine Learning)

机器学习是一种人工智能的方法和技术,旨在使计算机系统能够从数据中学习和改进,而无需明确编程。机器学习算法通过训练模型来发现数据中的模式和规律,并利用这些模式和规律进行预测、分类、决策等任务。机器学习算法可以分为监督学习、无监督学习和强化学习等不同类型。

5.2 深度学习(Deep Learning)

深度学习是人工智能技术的一个分支,它基于人工神经网络模拟人脑神经元之间的连接和信号传递。深度学习通过多层神经网络进行特征提取和学习,并通过反向传播算法调整网络参数,以实现对复杂数据的建模和分析。深度学习在处理大规模数据和复杂任务上表现出色,如图像识别、语音识别、自然语言处理等。

5.3 三者之间的关系

机器学习、深度学习和人工智能是三个相关但不同的概念,它们在人工智能领域中相互关联和相互支持。机器学习和深度学习是实现人工智能的关键技术和方法之一,它们提供了从数据中学习和自动化决策的能力。人工智能是一个更宽泛的概念,涵盖了包括机器学习和深度学习在内的各种技术,旨在实现智能系统的开发和应用。深度学习是机器学习的一个分支,利用多层神经网络进行高级特征学习和复杂模式识别。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/254096.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

企业呼叫中心系统怎么样?

随着现代商业环境的变化,呼叫中心系统成为众多企业日常运营的重要组成部分。企业呼叫中心系统是一种集中管理和处理企业电话通信的解决方案,它可以改善客户服务质量,提升服务效率,并为企业带来诸多优势。 企业呼叫中心系统功能概…

2021年数维杯国际大学生数学建模D题2021年电影市场票房波动模型分析求解全过程文档及程序

2021年数维杯国际大学生数学建模 D题 2021年电影市场票房波动模型分析 原题再现: 1、电影票房预测建模背景   随着人们文化消费需求的增加,电影院和银幕的数量不断增加,我国的电影产业不断呈现出繁荣景象。2019年,全国电影票房…

2024年【金属非金属矿山(地下矿山)安全管理人员】及金属非金属矿山(地下矿山)安全管理人员实操考试视频

题库来源:安全生产模拟考试一点通公众号小程序 金属非金属矿山(地下矿山)安全管理人员是安全生产模拟考试一点通总题库中生成的一套金属非金属矿山(地下矿山)安全管理人员实操考试视频,安全生产模拟考试一…

libxls - 编译

文章目录 libxls - 编译概述笔记静态库工程测试控制台exe工程测试备注备注END libxls - 编译 概述 想处理.xls格式的excel文件. 查了一下libxls库可以干这个事. 库地址 https://github.com/libxls/libxls.git 但是这个库的makefile写的有问题, 在mingw和WSL下都编译不了. 好在…

1265. 数星星(树状数组/蓝桥杯)

题目&#xff1a; 输入样例&#xff1a; 5 1 1 5 1 7 1 3 3 5 5输出样例&#xff1a; 1 2 1 1 0 思路&#xff1a; 树状数组 代码&#xff1a; #include<cstdio> #include<iostream> using namespace std; const int N32010; int n; int tr[N],level[N];int lo…

Linux---用户组相关操作

1. 创建用户组 命令说明groupadd创建(添加)用户组 创建用户组效果图: 2. 创建用户并指定用户组 创建用户并指定用户组效果图: 3. 修改用户组 修改用户组效果图: 4. 删除用户组 命令说明groupdel删除用户组 删除用户组效果图: 说明: 如果用户组下面有用户先删除用户在…

回归预测 | MATLAB实现IBL-LSSVM【23年新算法】逻辑优化算法优化最小二乘支持向量机的数据回归预测 (多指标,多图)

回归预测 | MATLAB实现IBL-LSSVM【23年新算法】逻辑优化算法优化最小二乘支持向量机的数据回归预测 &#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现IBL-LSSVM【23年新算法】逻辑优化算法优化最小二乘支持向量机的数据回归预测 &#xff08;多指标…

【C++】封装:练习案例-点和圆的关系

练习案例&#xff1a;点和圆的关系 设计一个圆形类&#xff08;Circle&#xff09;&#xff0c;和一个点类&#xff08;Point&#xff09;&#xff0c;计算点和圆的关系。 思路&#xff1a; 1&#xff09;创建点类point.h和point.cpp 2&#xff09;创建圆类circle.h和circle…

什么是漏电保护芯片?具有什么作用?

漏电保护芯片是一种用于监测电气设备是否存在漏电并提供保护的微型芯片。漏电是电气设备中普遍存在的一种安全隐患,当设备发生漏电时,电流会流回地线,并可能导致电击、火灾等严重后果。因此,漏电保护芯片的使用对于保障人身财产安全具有非常重要的意义。下面就是我们几款漏电保…

格式化Echarts的X轴显示,设置显示间隔

业务需求&#xff1a;x轴间隔4个显示&#xff0c;并且末尾显示23时 x轴为写死的0时-23时&#xff0c;使用Array.from data: Array.from({ length: 24 }).map((_, i) > ${i}时) 需要在axisLabel 里使用 interval: 0, // 强制显示所有刻度标签&#xff0c;然后通过 formatter …

【Axure教程】区间评分条

区间评分条是一种图形化的表示工具&#xff0c;用于展示某一范围内的数值或分数&#xff0c;并将其划分成不同的区间。这种评分条通常用于直观地显示数据的分布或某个指标的表现。常用于产品评价、调查和反馈、学术评价、健康评估、绩效评估、满意度调查等场景。 所以今天作者…

大语言模型加速信创软件 IDE 技术革新

QCon 全球软件开发大会&#xff08;上海站&#xff09;将于 12 月 28-29 日举办&#xff0c;会议特别策划「智能化信创软件 IDE」专题&#xff0c;邀请到华为云开发工具和效率领域首席专家、华为软件开发生产线 CodeArts 首席技术总监王亚伟担任专题出品人&#xff0c;为专题质…

bottom-up-attention-vqa-master 成功复现!!!

代码地址 1、create_dictionary.py 建立词典和使用预训练的glove向量 &#xff08;1&#xff09;create_dictionary() 遍历每个question文件取出所关注的question部分&#xff0c;qs 遍历qs&#xff0c;对每个问题的文本内容进行分词&#xff0c;并将分词结果添加到字典中&…

解决飞书文档导出word后公式乱码/不可显示问题

目录 项目场景: 原因分析: 解决方案: 项目场景: 飞书文档导出为word: 但是公式会出现在word中无法显示、乱码等问题。 原因分析: 飞书做的有点菜

智能优化算法应用:基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.静电放电算法4.实验参数设定5.算法结果6.…

DS哈希查找—线性探测再散列

Description 定义哈希函数为H(key) key%11&#xff0c;输入表长&#xff08;大于、等于11&#xff09;。输入关键字集合&#xff0c;用线性探测再散列构建哈希表&#xff0c;并查找给定关键字。 –程序要求– 若使用C只能include一个头文件iostream&#xff1b;若使用C语言…

Java_Lambda表达式JDK8新特性(方法引用)

一、Lambda表达式 接下来&#xff0c;我们学习一个JDK8新增的一种语法形式&#xff0c;叫做Lambda表达式。作用&#xff1a;用于简化匿名内部类代码的书写。 1.1 Lambda表达式基本使用 怎么去简化呢&#xff1f;Lamdba是有特有的格式的&#xff0c;按照下面的格式来编写Lamd…

FPGA实现 TCP/IP 协议栈 客户端 纯VHDL代码编写 提供4套vivado工程源码和技术支持

目录 1、前言版本更新说明免责声明 2、相关方案推荐我这里已有的以太网方案1G 千兆网 TCP-->服务器 方案10G 万兆网 TCP-->服务器客户端 方案常规性能支持多节点FPGA资源占用少数据吞吐率高低延时性能 4、TCP/IP 协议栈代码详解代码架构用户接口代码模块级细讲顶层模块PA…

腾讯地图绘画多边形和计算面积

<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>地图</title></head><script src…

将加速度计当作麦克风来听振动

我们都知道&#xff0c;用麦克风来捕捉声音时&#xff0c;最大的挑战是&#xff1a;背景噪音。这背景噪音有&#xff0c;车辆行驶中的风噪、车辆所处周围的环境的声音&#xff08;人声、车间其它声音&#xff09;、车辆其它部件正常工作的声音。 我们测用加速度计测振动时&…