SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测

SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测

目录

    • SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现GWO-CNN-GRU-selfAttention灰狼算法优化卷积门控循环单元融合自注意力机制多变量多步时间序列预测,灰狼算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数;
在这里插入图片描述

CNN卷积核大小:卷积核大小决定了CNN网络的感受野,即每个卷积层可以捕获的特征的空间范围。选择不同大小的卷积核可以影响模型的特征提取能力。较小的卷积核可以捕获更细粒度的特征,而较大的卷积核可以捕获更宏观的特征。

GRU门控单元个数:GRU是一种适用于序列数据的循环神经网络,其神经元个数决定了模型的复杂性和记忆能力。较多的GRU神经元可以提高模型的学习能力,但可能导致过拟合。

学习率:学习率是训练深度学习模型时的一个关键超参数,它控制每次参数更新的步长。学习率过大可能导致模型不稳定和发散,学习率过小可能导致训练过慢或陷入局部最小值。

自注意力层 (Self-Attention):Self-Attention自注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。自注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,自注意力机制可以用于对序列中不同时间步之间的相关性进行建模。

在这里插入图片描述
2.运行环境为Matlab2023a及以上,提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线);

3.excel数据集(负荷数据集),输入多个特征,输出单个变量,考虑历史特征的影响,多变量多步时间序列预测(多步预测即预测下一天96个时间点),main.m为主程序,运行即可,所有文件放在一个文件夹;

在这里插入图片描述
4.命令窗口输出SSE、RMSE、MSE、MAE、MAPE、R2、r多指标评价;
适用领域:负荷预测、风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测获取。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Grey Wolf Optimizer
% 灰狼优化算法

function [Alpha_score, Alpha_pos, Convergence_curve, bestPred,bestNet,bestInfo ] = GWO(SearchAgents_no, Max_iter, lb, ub, dim, fobj)
% 输入参数:
% SearchAgents_no:搜索个体的数量
% Max_iter:最大迭代次数
% lb:搜索空间的下界(一个1维向量)
% ub:搜索空间的上界(一个1维向量)
% dim:问题的维度
% fobj:要优化的目标函数,输入为一个位置向量,输出为一个标量

% 初始化alpha、beta和delta的位置向量
Alpha_pos = zeros(1, dim);
Alpha_score = inf; % 对于最小化问题,请将其改为-inf

Beta_pos = zeros(1, dim);
Beta_score = inf; % 对于最小化问题,请将其改为-inf

Delta_pos = zeros(1, dim);
Delta_score = inf; % 对于最小化问题,请将其改为-inf

% 初始化领导者的位置向量和得分

Positions = ceil(rand(SearchAgents_no, dim) .* (ub - lb) + lb);

Convergence_curve = zeros(1, Max_iter);

l = 0; % 迭代计数器

% 主循环
while l < Max_iter
    for i = 1:size(Positions, 1)
        % 将超出搜索空间边界的搜索代理放回搜索空间内
        Flag4ub = Positions(i, :) > ub;
        Flag4lb = Positions(i, :) < lb;
        Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;

        % 计算每个搜索个体的目标函数值
        [fitness,Value,Net,Info] = fobj(Positions(i, :));

        % 更新Alpha、Beta和Delta的位置向量
        if fitness < Alpha_score
            Alpha_score = fitness;       % 更新Alpha的得分
            Alpha_pos = Positions(i, :); % 更新Alpha的位置向量
            bestPred = Value;
            bestNet = Net;
            bestInfo = Info;
        end

        if fitness > Alpha_score && fitness < Beta_score
            Beta_score = fitness;       % 更新Beta的得分
            Beta_pos = Positions(i, :); % 更新Beta的位置向量
        end

        if fitness > Alpha_score && fitness > Beta_score && fitness < Delta_score
            Delta_score = fitness;       % 更新Delta的得分
            Delta_pos = Positions(i, :); % 更新Delta的位置向量
        end
    end

    a = 2 - l * ((2) / Max_iter); % a从2线性减少到0

    % 更新搜索个体的位置向量
    for i = 1:size(Positions, 1)
        for j = 1:size(Positions, 2)
            r1 = rand(); % r1是[0,1]区间的随机数
            r2 = rand(); % r2是[0,1]区间的随机数

            A1 = 2 * a * r1 - a; % 参考文献中的公式(3.3)
            C1 = 2 * r2; % 参考文献中的公式(3.4)

            D_alpha = abs(C1 * Alpha_pos(j) - Positions(i, j)); % 参考文献中的公式(3.5)-part 1
            X1 = Alpha_pos(j) - A1 * D_alpha; % 参考文献中的公式(3.6)-part 1

            r1 = rand();
            r2 = rand();

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/253862.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

气候灾害组织:全球红外降水站数据

气候灾害组织红外降水站数据-Prelim (CHIRPS-Prelim) 气候灾害中心红外降水站数据 Prelim (CHIRPS-Prelim) 融合了 CHIRPS 数据与原位降水数据&#xff0c;以消除数据偏差并提高其准确性。生成 CHIRPS-Prelim 的过程与 CHIRPS 过程类似&#xff0c;主要区别在于它仅依赖于近实…

ripro后台登录后转圈和图标不显示的原因及解决方法

最近&#xff0c;好多小伙伴使用ripro主题的小伙伴们都发现&#xff0c;登录后台后&#xff0c;进入主题设置就转圈&#xff0c;等待老半天后好不容易显示页面了&#xff0c;却发现图标不显示了&#xff0c;都统一显示为方框。 这是因为后台的js、css这类静态资源托管用的是js…

快速排序(一)

目录 快速排序&#xff08;hoare版本&#xff09; 初级实现 问题改进 中级实现 时空复杂度 高级实现 三数取中 快速排序&#xff08;hoare版本&#xff09; 历史背景&#xff1a;快速排序是Hoare于1962年提出的一种基于二叉树思想的交换排序方法 基本思想&#xff1a…

和鲸科技CEO范向伟受邀出席港航数据要素流通与生态合作研讨会,谈数据资产入表的战略机会

近日&#xff0c;由上海虹口数字航运创新中心、龙船&#xff08;北京&#xff09;科技有限公司&#xff08;下简称“龙船科技”&#xff09;、华东江苏大数据交易中心联合举办的“港航数据要素流通与生态合作研讨会”圆满落幕&#xff0c;来自港航领域的近百名企业代表共同参与…

【具身智能评估3】具身视觉语言规划(EVLP)度量标准汇总

参考论文&#xff1a;Core Challenges in Embodied Vision-Language Planning 论文作者&#xff1a;Jonathan Francis, Nariaki Kitamura, Felix Labelle, Xiaopeng Lu, Ingrid Navarro, Jean Oh 论文原文&#xff1a;https://arxiv.org/abs/2106.13948 论文出处&#xff1a;Jo…

【开源项目】WPF 扩展 -- 多画面视频渲染组件

目录 1、项目介绍 2、组件集成 2.1 下载地址 2.2 添加依赖 3、使用示例 3.1 启动动画 3.2 视频渲染 3.3 效果展示 4、项目地址 1、项目介绍 Com.Gitusme.Net.Extensiones.Wpf 是一款 Wpf 扩展组件。基于.Net Core 3.1 开发&#xff0c;当前是第一个发布版本 1.0.0&am…

设计模式——状态模式

引言 状态模式是一种行为设计模式&#xff0c; 让你能在一个对象的内部状态变化时改变其行为&#xff0c; 使其看上去就像改变了自身所属的类一样。 问题 状态模式与有限状态机 的概念紧密相关。 其主要思想是程序在任意时刻仅可处于几种有限的状态中。 在任何一个特定状态中…

Mysql利用备份数据恢复单表

1、说明 之前的备份是使用Xtrabackup8做的备份 使用了独立表空间(innodb_file_per_table1)&#xff0c;就可以单独恢复这个表。 2、在备份的目录下执行Prepare 根据自己之前备份的目录&#xff0c;选择执行路径 我之前的备份目录是 /tmp/backup/2023-12-16/full cd /tmp/…

chrome升级后,调试vue在控制台输出总是显示cjs.js

当前chrome版本120.0.6099.72 在vue中使用console.log输出时&#xff0c;总是显示cjs.js多少多少行&#xff0c;不能显示源文件名及行数 【解决方案】 打开控制台的设置 左侧找到“Ignore List”&#xff0c;取消勾选"enable Lgnore Listing"&#xff0c;并重启chr…

C# WPF上位机开发(知识产权ip保护)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 上位机软件如果是和硬件模块搭配开发&#xff0c;这个时候大部分上位机基本上都是白送的&#xff0c;不会收取相关的费用。但是&#xff0c;如果上…

VR虚拟现实的七大应用领域

一、工业领域 园区利用虚拟现实技术优化生产管理与节能减排&#xff0c;实现提质增效降本。发展支持多人协作和模拟仿真的虚拟现实开放式服务平台&#xff0c;打通产品设计与制造环节&#xff0c;构建虚实融合的远程运维新型解决方案&#xff0c;适配各类先进制造技术的员工技…

EasyExcel 简单导入

前边写过使用easyexcel进行简单、多sheet页的导出。今天周日利用空闲写一下对应简单的导入。 重点&#xff1a;springboot、easyExcel、桥接模式&#xff1b; 说明&#xff1a;本次使用实体类student&#xff1a;属性看前边章节内容&#xff1b; 1、公共导入service public …

slurm 23.11.0集群 debian 11.5 安装

slurm 23.11.0集群 debian 11.5 安装 用途 Slurm(Simple Linux Utility for Resource Management&#xff0c; http://slurm.schedmd.com/ )是开源的、具有容错性和高度可扩展的Linux集群超级计算系统资源管理和作业调度系统。超级计算系统可利用Slurm对资源和作业进行管理&a…

I/O流的相关内容

首先我们了解一下什么是文件&#xff1a; 文件其实就是让我们用来保存数据的地方&#xff0c;它可以用来保存信息&#xff0c;图片&#xff0c;以及音频等各类数据。 文件流&#xff1a; 那我们是如何通过我们的程序来进行对文件的操作呢&#xff1f;这里我们就要提出一个概…

Vue学习计划-Vue2--VueCLi(八)vuex统一状态管理实现数据共享

1. vuex是什么 概念&#xff1a;专门在Vue中实现集中式状态&#xff08;数据&#xff09;管理的一个Vue插件&#xff0c;对Vue应用中多个组件的共享状态进行集中式的管理&#xff08;读/写&#xff09;&#xff0c;也是一种组件间通信的方式&#xff0c;且适用于任意组件间通信…

gitlab 安装

1.安装依赖 sudo apt updatesudo apt-get upgradesudo apt-get install curl openssh-server ca-certificates postfix安装gitlab curl -s https://packages.gitlab.com/install/repositories/gitlab/gitlab-ce/script.deb.sh | sudo bash官网下载安装包 要选ubuntu focal 安…

【Hadoop】HDFS设计思想

HDFS设计思想为什么HDFS上的块为什么远远大与传统文件系统&#xff1f; HDFS设计思想 首先需要明确HDFS部署在集群之上。 假设有一个50G的文件&#xff0c;在HDFS中分布式的存储这个文件&#xff0c;首先需要将50G文件分成多个数据块&#xff0c;块的大小可以设置&#xff0c;…

一二三应用开发平台部署文档——开发环境搭建手册

背景 开源平台在ReadMe文档中简要描述了如何部署与启动以及重要注意事项&#xff0c;有小伙伴私信我希望提供一个详细具体的部署说明&#xff0c;然后联想到自己出于学习或研究目的&#xff0c;去搭建一些开源项目时&#xff0c;面对简要的说明也经常遇到障碍&#xff0c;比如…

在金属/绝缘体/p-GaN栅极高电子迁移率晶体管中同时实现大的栅压摆幅和增强的阈值电压稳定性

标题&#xff1a;Simultaneously Achieving Large Gate Swing and Enhanced Threshold Voltage Stability in Metal/Insulator/p-GaN Gate HEMT (IEDM2023) 摘要 摘要&#xff1a;对于增强型GaN功率晶体管的发展&#xff0c;栅压摆幅和阈值电压稳定性通常是互相排斥的。本文展…