NBA得分数据可视化

简介

这是上学期的一些课外活动内容,将 NBA 得分数据进行可视化,并进行后续的探索性分析和建模(本文未介绍)。主要研究动机来源于这篇论文:

该论文使用二元的伽马过程来刻画 NBA 主客场得分数据,并且考虑了两者之间的相关性。该模型可以预测最终得分和两支队伍的总得分。并将预测结果应用到了下注市场(赌球?)。

小编有话说:这是一篇将随机过程(可靠性中的退化过程)应用到了其他领域(体育,篮球)的典型代表。并且发到了管理学不错的期刊(ABS 4星),这种思路非常值得学习!

本文主要实现下论文中的得分数据图。下面是该论文中的大量主客场球队的得分路径图。本文主要针对某一场比赛的两支队伍进行可视化。

来源于:K. Song and J. Shi (2020). "A gamma process based in-play prediction model for National Basketball Association games." European Journal of Operational Research 283(2): 706-713.

希望得到类似“腾讯体育”中的图形,如下所示:

案例教程

数据介绍

本文数据来自于该网站,需要对数据进行爬取。当然如果有合适的 R 包直接提供也是很不错的选择,体育相关 R 包可见: 。

这里以 2022 年 1 月 1 日的 印第安纳步行者洛杉矶快船 的比赛作为案例。首先,加载该数据:

data1 = read_excel("1月/01-01-202 Indiana Pacers VS Los Angeles Clippers.xls")
colnames(data1) = c("序号","时间","比分")

原始数据

数据包含三列,得分发生变化时,就会记录一条数据。该数据包含了 468 行。

数据预处理

接下来,对数据进行预处理。小编为了方便起见,写了一个简单的函数。

data_precess = function(data1,home = "Charlotte Hornets", away = "Brooklyn Nets"){
  # 将“比分”列中的“0-0”转换为两列数据
  new_data <- separate(data1, col = "比分", into = c("主队比分", "客队比分"), sep = "-")
  # 将“时间”列中的字符串转换为时间值
  new_data$时间 <- as.numeric(ms(new_data$时间))
  new_data$时间 <- max(new_data$时间) - new_data$时间 
  time_pr = time_process(new_data$时间)
  new_data$新时间 = time_pr$new_dat
  new_data$节次 <- factor(time_pr$index)
  new_data$主队比分 = as.numeric(new_data$主队比分)
  new_data$客队比分 = as.numeric(new_data$客队比分)

  return(data = new_data) 
}

运行下面代码,你将获得数据处理后的结果:

home = "Charlotte Hornets"
away = "Brooklyn Nets"
new_data = data_precess(data1, home = home, away = away)

主要思路就是把主客队的得分拆分成两列,并给出新的时间刻度和节次。

处理后的数据

数据可视化

处理完数据,就可以进行可视化了。代码比较简单,主要使用 geom_line() 添加两条折线,使用 geom_rect() 添加阴影部分来区分不同的节次。此外,添加一些细节调整。

new_data %>% 
  ggplot(aes(x = 新时间)) +
  geom_rect(xmin = 0, xmax = 720, ymin = -Inf, ymax = Inf, fill = "#F7F7F7", alpha = 0.5) +
  geom_rect(xmin = 0+720*2, xmax = 3*720, ymin = -Inf, ymax = Inf, fill = "#F7F7F7", alpha = 0.5) +
  geom_line(aes(y = 主队比分, color = "Home")) +
  geom_line(aes(y = 客队比分, color = "Away")) +
  # facet_wrap(vars(节次)) +
  scale_x_continuous(expand = c(0,0),breaks = seq(0, 2160, 720)) +
  scale_y_continuous(expand = c(0,0)) +
  scale_color_manual(name = "队伍",
                     values = c("Home" = "#DA2F20", "Away" = "#3E498D"),
                     labels = c(home,away))+
  labs(x = "时间", y = "比分") +
  theme_bw() + theme(panel.grid = element_blank(),
                     legend.position = c(0.13,0.9))

两支队伍的得分数据

小编有话说

  • 该图仅仅展示了两个队伍整场比赛的得分情况,更多探索分析还能进行,例如:计算最大分差,比分交替领先次数等。

  • 本文所提论文就是基于这样的得分数据,使用随机过程进行建模与预测。这是一个很不错的出发点,更多的统计知识应用到该数据中还需要我们进一步探索。

  • 如果读者们对这类体育数据感兴趣,欢迎一起交流合作!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/253570.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

智能五子棋1

*一、项目需求* 五子棋是一种简单的黑白棋&#xff0c;历史悠久&#xff0c;起源于中国&#xff0c;后传入日本&#xff0c;在日本被称为“连珠”&#xff0c;是一种老少皆宜的益智游戏。 人工智能五子棋系统的目标用户是一切想致力于研究人机对弈算法理论的相关研究者和一切…

【每日一题】【12.17】746.使用最小花费爬楼梯

&#x1f525;博客主页&#xff1a; A_SHOWY&#x1f3a5;系列专栏&#xff1a;力扣刷题总结录 数据结构 云计算 数字图像处理 力扣每日一题_ 1.题目链接 746. 使用最小花费爬楼梯https://leetcode.cn/problems/min-cost-climbing-stairs/ 2.题目详情 今天的每日一题又…

04_Web框架之Django一

Web框架之Django一 学习目标和内容 1、能够描述Django的作用 2、能够使用Django创建应用 3、能够使用GET和POST请求方式进行传参 4、能够使用Django的函数式方法定义视图 5、能够进行Django的配置文件修改 6、能够基本使用Django的路由定义 一、Django相关介绍 1、什么是Djan…

ASP.NET MVC实战之权限拦截Authorize使用

1&#xff0c;具体的实现方法代码如下 public class CustomAuthorizeAttribute : FilterAttribute, IAuthorizationFilter{/// <summary>/// 如果需要验证权限的时候&#xff0c;就执行进来/// </summary>/// <param name"filterContext"></par…

饥荒Mod 开发(十):制作一把AOE武器

饥荒Mod 开发(九)&#xff1a;物品栏排列 饥荒Mod 开发(十一)&#xff1a;修改物品堆叠 前面的文章介绍了很多基础知识以及如何制作一个物品&#xff0c;这次制作一把武器&#xff0c;装备之后可以用来攻击怪物。 制作武器贴图和动画 1.1 制作贴图。 先准备一张武器的贴图&a…

【23-24 秋学期】NNDL 作业11 LSTM

目录 习题6-4 推导LSTM网络中参数的梯度&#xff0c; 并分析其避免梯度消失的效果 习题6-3P 编程实现下图LSTM运行过程 &#xff08;一&#xff09;numpy实现 &#xff08;二&#xff09;使用nn.LSTMCell实现 &#xff08;三&#xff09; 使用nn.LSTM实现 总结 &#x…

神经网络可以计算任何函数的可视化证明

神经网络可以计算任何函数的可视化证明 对于神经网络&#xff0c;一个显著的事实就是它可以计算任何函数。 如下&#xff1a;不管该函数如何&#xff0c;总有神经网络能够对任何可能的输入x&#xff0c;输出值f&#xff08;x&#xff09; 即使函数有很多输入和输出&#xff0…

vue2入门

vue2官方文档&#xff1a;安装 — Vue.js 1、安装 新建"vue"文件夹——>新建vue1.html 直接用<script>标签引入vue&#xff1a; <script src"https://cdn.jsdelivr.net/npm/vue2.7.14/dist/vue.js"></script> tips: CDN:一个网络…

uniapp中uni-data-select下拉框组件如何去除边框?

在目录中找到文件夹。 找到下拉框组件文件夹 注释该文件夹以下代码就能实现下拉框不带边框。

前端对接 —— 周末

1.点击校验 点击校验 宇哥 记得过滤 不能校验的数据&#xff08;我后端还要检验吗&#xff1f;&#xff09; 2.前端数据对接 这个可以吗&#xff1f; 这种的可以吗&#xff1f;

uniapp实现地图电子围栏功能

该功能使用uniapp中内置组件map实现 效果图预览&#xff1a; 实现过程&#xff1a; 1.文档&#xff1a; 2.代码&#xff1a; <template><view><map :style"width: 100%; height:screenHeight" :latitude"latitude" :longitude"longit…

免费在线markdown语法编辑器

本地用习惯了Typora&#xff0c;但是上传的图片保存在本地&#xff0c;其他电脑想查看必须连本地的图片也拷贝过去。虽然Typora可以用PicGo保存远程的图片&#xff0c;但电脑离线之后看不到图片&#xff0c;不能接受。所以想找一款在线版的编辑器&#xff0c;方便记笔记。 我之…

二叉树前,中序推后续_中,后续推前序

文章目录 介绍思路例子 介绍 二叉树是由根、左子树、右子树三部分组成。 二叉树的遍历方式又可以分为前序遍历&#xff0c;中序遍历&#xff0c;后序遍历。 前序遍历&#xff1a;根&#xff0c;左子树&#xff0c;右子树 中序遍历&#xff1a;左子树&#xff0c;根&#xff0…

【JVM】4.运行时数据区(程序计数器、虚拟机栈)

文章目录 4.JVM的运行时数据区4.1 程序计数器4.2 Java虚拟机栈4.3 虚拟机栈内存溢出 4.JVM的运行时数据区 4.1 程序计数器 程序计数器&#xff08;PC&#xff09;会记录着下一行字节码指令的地址。执行完当前指令后&#xff0c;PC刷新&#xff0c;JVM的执行引擎根据程序计数器…

饥荒Mod 开发(十一):修改物品堆叠

饥荒Mod 开发(十)&#xff1a;制作一把AOE武器 饥荒Mod 开发(十二)&#xff1a;一键制作 饥荒中物品栏有限&#xff0c;要拾取的物品有很多&#xff0c;经常装不下要忍痛丢掉各种东西&#xff0c;即使可以将物品放在仓库但是使用不方便&#xff0c;所以可以将物品的堆叠个数设…

GitHub入门介绍:从小白到大佬的旅程

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

【MySQL】MySQL表的操作-创建查看删除和修改

文章目录 1.创建表2.查看表结构3.修改表4.删除表 1.创建表 语法&#xff1a; CREATE TABLE table_name (field1 datatype,field2 datatype,field3 datatype ) character set 字符集 collate 校验规则 engine 存储引擎;说明&#xff1a; field 表示列名datatype 表示列的类型…

第7章 排序

前言 在这一章&#xff0c;我们讨论数组元素的排序问题。为简单起见&#xff0c;假设在我们的例子中数组只包含整数&#xff0c;虽然更复杂的结构显然也是可能的。对于本章的大部分内容&#xff0c;我们还假设整个排序工作能够在主存中完成&#xff0c;因此&#xff0c;元素的个…

【TB作品】51单片机,语音出租车计价器

西交大题目 1.语音出租车计价器 一、功能要求: 1.具有可模拟出租车车轮转速传感器的硬件设计,可计量出租车所走的公 里数。 2.显示和语音播报里程、价格和等待红灯或堵车的计时价格: 3.具有等待计时功能 4.具有实时年月日显示和切换功能。 5.操作简单、界面友好。 二、设计建议…

机器学习算法---异常检测

类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统计学检验箱…