动态规划——OJ题(一)

在这里插入图片描述


📘北尘_:个人主页

🌎个人专栏:《Linux操作系统》《经典算法试题 》《C++》 《数据结构与算法》

☀️走在路上,不忘来时的初心

文章目录

  • 一、第N个泰波那契数
    • 1、题目讲解
    • 2、思路讲解
    • 3、代码实现
  • 二、三步问题
    • 1、题目讲解
    • 2、思路讲解
    • 3、代码实现
  • 三、使用最小花费爬楼梯
    • 1、题目讲解
    • 2、思路讲解
    • 3、代码实现
  • 四、解码方法
    • 1、题目讲解
    • 2、思路讲解
    • 3、代码实现


一、第N个泰波那契数

1、题目讲解

在这里插入图片描述

2、思路讲解

  1. 状态表⽰:
    这道题可以「根据题⽬的要求」直接定义出状态表⽰:
    dp[i] 表⽰:第 i 个泰波那契数的值。
  2. 状态转移⽅程:
    题⽬已经⾮常贴⼼的告诉我们了:
    dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
  3. 初始化:
    从我们的递推公式可以看出, dp[i] 在 i = 0 以及 i = 1 的时候是没有办法进⾏推导的,因
    为 dp[-2] 或 dp[-1] 不是⼀个有效的数据。
    因此我们需要在填表之前,将 0, 1, 2 位置的值初始化。题⽬中已经告诉我们 dp[0] = 0,
    dp[1] = dp[2] = 1 。
  4. 填表顺序:
    毫⽆疑问是「从左往右」。
  5. 返回值:
    应该返回 dp[n] 的值。

3、代码实现

普通版

class Solution {
public:
    int tribonacci(int n) {
        if(n==0) return 0;
        if(n==1 || n==2) return 1;

        vector<int> dp(n+1);
        dp[0]=0,dp[1]=1,dp[2]=1;

        for(int i=3;i<=n;i++)
        {
            dp[i]=dp[i-1]+dp[i-2]+dp[i-3];
        }
        return dp[n];

    }
};

空间优化版

class Solution {
public:
    int tribonacci(int n) {
        if(n==0) return 0;
        if(n==1 || n==2) return 1;

        int a=0,b=1,c=1,d=0;

        for(int i=3;i<=n;i++)
        {
           d=a+b+c;
           a=b;
           b=c;
           c=d;
        }
        return d;
    }
};

二、三步问题

1、题目讲解

在这里插入图片描述

2、思路讲解

在这里插入图片描述

  1. 状态表⽰
    这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
    dp[i] 表⽰:到达 i 位置时,⼀共有多少种⽅法。
  2. 状态转移⽅程
    以 i 位置状态的最近的⼀步,来分情况讨论:
    如果 dp[i] 表⽰⼩孩上第 i 阶楼梯的所有⽅式,那么它应该等于所有上⼀步的⽅式之和:
    i. 上⼀步上⼀级台阶, dp[i] += dp[i - 1] ;
    ii. 上⼀步上两级台阶, dp[i] += dp[i - 2] ;
    iii. 上⼀步上三级台阶, dp[i] += dp[i - 3] ;
    综上所述, dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3] 。
    需要注意的是,这道题⽬说,由于结果可能很⼤,需要对结果取模。
    在计算的时候,三个值全部加起来再取模,即 (dp[i - 1] + dp[i - 2] + dp[i - 3])
    % MOD 是不可取的,同学们可以试验⼀下, n 取题⽬范围内最⼤值时,⽹站会报错 signed
    integer overflow 。
    对于这类需要取模的问题,我们每计算⼀次(两个数相加/乘等),都需要取⼀次模。否则,万⼀
    发⽣了溢出,我们的答案就错了。
  3. 初始化
    从我们的递推公式可以看出, dp[i] 在 i = 0, i = 1 以及 i = 2 的时候是没有办法进⾏
    推导的,因为 dp[-3] dp[-2] 或 dp[-1] 不是⼀个有效的数据。
    因此我们需要在填表之前,将 1, 2, 3 位置的值初始化。
    根据题意, dp[1] = 1, dp[2] = 2, dp[3] = 4 。
  4. 填表顺序
    毫⽆疑问是「从左往右」。
  5. 返回值
    应该返回 dp[n] 的值。

3、代码实现

class Solution {
public:
    int waysToStep(int n) {
        
        if(n==1 || n==2) return n;
        if(n==3)  return 4;
        const int MOD=1e9+7;

        vector<int> dp(n+1);
        dp[1]=1,dp[2]=2,dp[3]=4;

        for(int i=4;i<=n;i++)
        {
           
            dp[i]= ((dp[i - 1] + dp[i - 2]) % MOD + dp[i - 3]) % MOD;
        }
        return dp[n];
    }
};

三、使用最小花费爬楼梯

1、题目讲解

在这里插入图片描述

2、思路讲解

方法一:

  1. 状态表⽰:
    这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
    第⼀种:以 i 位置为结尾,巴拉巴拉
    dp[i] 表⽰:到达 i 位置时的最⼩花费。(注意:到达 i 位置的时候, i 位置的钱不需要
    算上)
  2. 状态转移⽅程:
    根据最近的⼀步,分情况讨论:
    ▪ 先到达 i - 1 的位置,然后⽀付 cost[i - 1] ,接下来⾛⼀步⾛到 i 位置:
    dp[i - 1] + csot[i - 1] ;
    ▪ 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到 i 位置:
    dp[i - 2] + csot[i - 2] 。
  3. 初始化:
    从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1 位置的值。容易得到
    dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。
  4. 填表顺序:
    根据「状态转移⽅程」可得,遍历的顺序是「从左往右」。
  5. 返回值:
    根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。

方法二:

  1. 状态表⽰:
    这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
    第⼆种:以 i 位置为起点,巴拉巴拉。
    dp[i] 表⽰:从 i 位置出发,到达楼顶,此时的最⼩花费。
  2. 状态转移⽅程:
    根据最近的⼀步,分情况讨论:
    ▪ ⽀付 cost[i] ,往后⾛⼀步,接下来从 i + 1 的位置出发到终点: dp[i + 1] +
    cost[i] ;
    ▪ ⽀付 cost[i] ,往后⾛两步,接下来从 i + 2 的位置出发到终点: dp[i + 2] +
    cost[i] ;
    我们要的是最⼩花费,因此 dp[i] = min(dp[i + 1], dp[i + 2]) + cost[i] 。
  3. 初始化:
    为了保证填表的时候不越界,我们需要初始化最后两个位置的值,结合状态表⽰易得: dp[n -
    1] = cost[n - 1], dp[n - 2] = cost[n - 2]
  4. 填表顺序:
    根据「状态转移⽅程」可得,遍历的顺序是「从右往左」。
  5. 返回值:
    根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。

3、代码实现

方法一:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n=cost.size();
        vector<int> dp(n+1);
        dp[0]=0,dp[1]=0;
        for(int i=2;i<=n;i++)
        {
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[n];        
    }
};

方法二:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n=cost.size();
        vector<int> dp(n);
        dp[n-1]=cost[n-1],dp[n-2]=cost[n-2];
        for(int i=n-3;i>=0;i--)
        {
            dp[i]=cost[i]+min(dp[i+1],dp[i+2]);
        }
        return min(dp[0],dp[1]);
          
    }
};

四、解码方法

1、题目讲解

在这里插入图片描述
在这里插入图片描述

2、思路讲解

  1. 状态表⽰:
    根据以往的经验,对于⼤多数线性 dp ,我们经验上都是「以某个位置结束或者开始」做⽂章,这
    ⾥我们继续尝试「⽤ i 位置为结尾」结合「题⽬要求」来定义状态表⽰。
    dp[i] 表⽰:字符串中 [0,i] 区间上,⼀共有多少种编码⽅法。

  2. 状态转移⽅程:
    定义好状态表⽰,我们就可以分析 i 位置的 dp 值,如何由「前⾯」或者「后⾯」的信息推导出
    来。
    关于 i 位置的编码状况,我们可以分为下⾯两种情况:
    i. 让 i 位置上的数单独解码成⼀个字⺟;
    ii. 让 i 位置上的数与 i - 1 位置上的数结合,解码成⼀个字⺟。

    下⾯我们就上⾯的两种解码情况,继续分析:
    让 i 位置上的数单独解码成⼀个字⺟,就存在「解码成功」和「解码失败」两种情况:
    i. 解码成功:当 i 位置上的数在 [1, 9] 之间的时候,说明 i 位置上的数是可以单独解
    码的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 1] 区间上的解码⽅法。因为 [0, i - 1] 区间上的所有解码结果,后⾯填上⼀个 i 位置解码后的字⺟就可以了。此时 dp[i] = dp[i - 1] ;

    ii. 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么
    此时 [0, i] 区间上不存在解码⽅法。因为 i 位置如果单独参与解码,但是解码失败
    了,那么前⾯做的努⼒就全部⽩费了。此时 dp[i] = 0 。
    让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成⼀个字⺟,也存在「解码成功」和「解码失败」两种情况:
    i. 解码成功:当结合的数在 [10, 26] 之间的时候,说明 [i - 1, i] 两个位置是可以
    解码成功的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 2 ] 区间上的解码
    ⽅法,原因同上。此时 dp[i] = dp[i - 2] ;
    ii. 解码失败:当结合的数在 [0, 9] 和 [27 , 99] 之间的时候,说明两个位置结合后解码失败(这⾥⼀定要注意 00 01 02 03 04 … 这⼏种情况),那么此时 [0, i] 区间上的解码⽅法就不存在了,原因依旧同上。此时 dp[i] = 0 。

    综上所述: dp[i] 最终的结果应该是上⾯四种情况下,解码成功的两种的累加和(因为我们关⼼
    的是解码⽅法,既然解码失败,就不⽤加⼊到最终结果中去),因此可以得到状态转移⽅程
    ( dp[i] 默认初始化为 0 ):
    i. 当 s[i] 上的数在 [1, 9] 区间上时: dp[i] += dp[i - 1] ;
    ii. 当 s[i - 1] 与 s[i] 上的数结合后,在 [10, 26] 之间的时候: dp[i] +=
    dp[i - 2] ;
    如果上述两个判断都不成⽴,说明没有解码⽅法, dp[i] 就是默认值 0 。

3、代码实现

优化前:

class Solution {
public:
    int numDecodings(string s) {
        int n=s.size();
        vector<int> dp(n);
        dp[0]=s[0]!='0';

        if(n==1) 
        return dp[0];
        

        if(s[1]!='0' && s[0]!='0') dp[1]++;
        int t=(s[0]-'0')*10+(s[1]-'0');
        if(t>=10 && t<=26) dp[1]++;
        
        for(int i=2;i<n;i++)
        {
            if(s[i]!='0') dp[i]+=dp[i-1];
            int t=(s[i-1]-'0')*10+(s[i]-'0');
            if(t>=10 && t<=26) dp[i]+=dp[i-2];
        }
        return dp[n-1];
    }
};

优化后:

class Solution {
public:
        int n=s.size();
        vector<int> dp(n+1);
        dp[0]=1;
        dp[1]=s[1-1]!='0';

        for(int i=2;i<=n;i++)
        {
            if(s[i-1]!='0') dp[i]+=dp[i-1];
            int t=(s[i-2]-'0')*10+(s[i-1]-'0');
            if(t>=10 && t<=26) dp[i]+=dp[i-2];
        }
        return dp[n];
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/253029.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PyCharm community 安装教程

目录 链接cudatoolkit 下载地址&#xff1a;https://www.jetbrains.com/pycharm/download/other.html 双击打开 安装路径&#xff0c;可自行更换到D盘 不导入设置 链接cudatoolkit

英伟达盒子 Jetson Xshell连接串口查看日志方法(串口日志、盒子日志)

文章目录 连接串口xshell连接串口信息 连接串口 接盒子上的A2、B2&#xff0c;以及接地线&#xff1a; 另外一头接上电脑&#xff08;我用的RS485转USB工具&#xff09;&#xff1a; xshell连接 协议选择SERIAL&#xff1a; 设置盒子厂商约定的端口号、波特率、数据位、停止位…

[Verilog] Verilog 数值表示

主页&#xff1a; 元存储博客 文章目录 前言1. 整数表示1.1 整数数据类型1.2 整数转换函数 2. 负数表示3. 实数表示4. 逻辑电平表示5. 逻辑值表示6. 字符表示法7. 字符串表示 前言 Verilog中&#xff0c;可以使用多种方式表示数值。 1. 整数表示 1.1 整数数据类型 基数格式…

相机倾斜棋盘格标定全记录 vs200+opencv安装

论文参考是这个 Geiger A, Moosmann F, Car , et al. Automatic camera and range sensor calibration using a single shot[C]//Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012: 3936-3943. 代码是这个github 花了一上午配好了c环境。。…

AAAI中稿心得

很幸运我们的一篇工作中稿了AAAI2024&#xff0c;题目是 Self-Prompt Mechanism for Few-Shot Image Recognition. 很高兴能在研二的上学期中稿一篇a会保底&#xff0c;也是我中稿的第一篇工作&#xff0c;成为我申请博士的资本。最重要的是&#xff0c;让枯燥无味的科研&#…

linux串口数据丢失--中断绑定CPU优化

问题现象 机器在户外测试时, 出现 轮速记 丢失的现象 小概率出现 50Hz丢失1~2帧极低概率出现 0.1~0.3秒内没有底盘数据 此问题导致slam定位漂, 需要优化处理. 验证与测试 问题1: 底盘串口 一个数据帧(head–data–crc) 被分片2~3报文 解决方法: 检测到head之后, 解析data…

机器学习--归一化处理

归一化 归一化的目的 归一化的一个目的是&#xff0c;使得梯度下降在不同维度 θ \theta θ 参数&#xff08;不同数量级&#xff09;上&#xff0c;可以步调一致协同的进行梯度下降。这就好比社会主义&#xff0c;一小部分人先富裕起来了&#xff0c;先富带后富&#xff0c…

03 使用Vite开发Vue3项目

概述 要使用vite创建Vue3项目&#xff0c;有很多种方式&#xff0c;如果使用命令&#xff0c;则推荐如下命令&#xff1a; # 使用nvm将nodejs的版本切换到20 nvm use 20# 全局安装yarn npm install -g yarn# 使用yarnvite创建项目 yarn create vite不过&#xff0c;笔者更推荐…

docker小白第五天

docker小白第五天 docker的私有库 有些涉密的信息代码不能放在阿里云的镜像仓库&#xff0c;因此需要构建一个个人内网专属的私有库&#xff0c;将镜像或者容器代码进行推送保存。 下载镜像docker registry 执行代码docker pull registry&#xff0c;用于搭建私服前的准备。…

Python异常值的自动检测实战案例

概要 在数据分析和机器学习中&#xff0c;异常值的检测是一个关键步骤&#xff0c;它有助于识别数据中的异常模式和离群点。本文将介绍Python中异常值检测的实战案例&#xff0c;使用一些常见的技术和库&#xff0c;为大家提供全面的示例代码和详细解释。 异常值的定义 异常值…

虚拟机下Ubuntu上网设置

文章目录 一、虚拟机上网的两种方式1.1 NAT模式&#xff08;Network Address Translation&#xff09;1.2 桥接模式&#xff08;Bridge Mode&#xff09;1.3 简介 二、实际配置2.1 NAT模式配置2.2 桥接模式配置 之前跟着博客配了好几个也没用&#xff0c;后来自己慢慢模式实践测…

HQL优化之数据倾斜

group by导致倾斜 前文提到过&#xff0c;Hive中未经优化的分组聚合&#xff0c;是通过一个MapReduce Job实现的。Map端负责读取数据&#xff0c;并按照分组字段分区&#xff0c;通过Shuffle&#xff0c;将数据发往Reduce端&#xff0c;各组数据在Reduce端完成最终的聚合运算。…

女生想通过培训转行软件测试类可行吗?

首先&#xff0c;女生转行IT行业做软件测试是可以的&#xff0c;因为软件测试岗&#xff0c;尤其是其中的功能性测试岗&#xff0c;入行门槛并不高&#xff0c;有很多女生在做&#xff0c;且我个人认为还蛮适合女生的&#xff0c;因为女生相对来说更细心&#xff0c;文档能力也…

PVE系列-防火墙的免费安静之旅IPfire

Ventoy一款引导盘可以引导各种启动盘安装盘的工具https://www.ventoy.net/cn/index.html 在它的兼容iso的列表 中发现了Ipfirehttps://wiki.ipfire.org/ &#xff0c;本来用着openwrt也挺好&#xff0c;忍不住的虚拟机尝了尝鲜&#xff0c;发现的功能有2&#xff0c; 安全吧&a…

植物分类-PlantsClassification

一、模型配置 一、backbone resnet50 二、neck GlobalAveragePooling 三、head fc 四、loss type‘LabelSmoothLoss’, label_smooth_val0.1, num_classes30, reduction‘mean’, loss_weight1.0 五、optimizer lr0.1, momentum0.9, type‘SGD’, weight_decay0.0001 六、sche…

06. Python模块

目录 1、前言 2、什么是模块 3、Python标准库模块 3.1、os模块 3.2、datetime 模块 3.3、random模块 4、自定义模块 4.1、创建和使用 4.2、模块命名空间 4.3、作用域 5、安装第三方依赖 5.1、使用 pip 安装单个依赖 5.2、从 requirements.txt 安装依赖 5.3、安装指…

DOM树和DOM对象与JS关系的深入研究

const和let使用说明 var不好用&#xff0c;我们如果用变量都是用let&#xff0c;如果用常量乃是不变的量&#xff0c;我们用const&#xff0c;见let const知变量是否可变。比如一个常量在整个程序不会变&#xff0c;但是你用let&#xff0c;是可以的。但是let最好与内部变量改…

Mybatis的插件运⾏原理,如何编写⼀个插件?

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

基于springboot实现的健身房管理系统

一、系统架构 前端&#xff1a;html | js | css | jquery | bootstrap 后端&#xff1a;springboot | springdata-jdbc 环境&#xff1a;jdk1.7 | mysql | maven 二、代码及数据库 三、功能介绍 01. 登录页 02. 管理员-首页 03. 管理员-会员卡查询 04. 管理员-会员管理…

Zotero攻略

给大家分享一下我对于Zotero的使用。 1、下载链接 Zotero | Your personal research assistant 进入后直接下载即可 2、一些好用的插件 &#xff08;1&#xff09;Zotero Connector 下载地址&#xff1a;Zotero | Connectors 超级好用&#xff01;不用一篇一篇下PDF了&am…