为什么Apache Doris适合做大数据的复杂计算,MySQL不适合?

为什么Apache Doris适合做大数据的复杂计算,MySQL不适合?

  • 一、背景说明
  • 二、DB架构差异
  • 三、数据结构差异
  • 四、存储结构差异
  • 五、总结

一、背景说明

图(封面 doris ? mysql)!

经常有小伙伴发出这类直击灵魂的疑问:

Q:“为什么Apache Doris适合做大数据的复杂计算,MySQL不适合?”
A:“因为Apache Doris是OLAP,MySQL是OLTP啊!”
Q:“SO?”
A:“因为一个是AP场景的DB,一个是TP场景的DB啊!”
Q:“SO?”

[emm] 要不先来简单概述下OLAP和OLTP

OLAP(Online Analytical Processing,联机分析处理)主要用于大数据场景下复杂的分析查询和决策支持,重点在于数据分析、多维度分析和报表生成。例如,销售数据分析、市场趋势预测、业务报表生成等。

OLTP(Online Transaction Processing,联机事务处理)主要用于处理实时事务和业务操作,重点在于高并发、高可靠性和数据一致性。例如,在线购物、银行交易、航空订票等需要频繁读写小规模数据的场景。

这么一概述,OLAP和OLTP在应用场景和目的上确实有所不同,那么是什么原因导致的呢?

接下来,咱们从OLAP(Apache Doris为例)和OLTP(Mysql为例)的DB架构、数据结构以及存储结构的维度来一探究竟吧!

二、DB架构差异

在这里插入图片描述

  • 数据分布:数据被分割成多个部分,每个BE节点都独立地存储一部分数据,节点之间不共享存储,每个节点独立处理自己所负责的数据。
  • 数据处理:每个BE节点都独立地处理自己所负责的数据,节点之间可以并行地进行数据处理,从而提高系统的整体性能。
  • 扩展性:更注重水平横向扩展,通过增加更多的节点来分担数据和负载,从而提供更好的可扩展性和负载均衡性能。
  • 一致性:通过一致性协议和分布式事务来维护数据的一致性。

Apache Doris 是典型的 Shared Nothing 分布式计算架构,每个BE都有自己的CPU、内存和硬盘等,不存在共享资源。多BE采用MPP(大规模并行处理)模式,各处理单元之间通过协议通信,并行处理和扩展能力更好,为 Apache Doris 带来了高可用、极简部署、横向可扩展以及强大的实时分析性能等一系列核心特色。

在这里插入图片描述

  • 数据分布:数据存储在服务端,客户端通过网络与服务端进行通信并发送请求,服务端负责处理请求并返回结果。
  • 数据处理:服务端负责接收并处理客户端的请求,包括查询、更新等操作,承担着数据处理的主要责任。
  • 扩展性:通常需要对服务端进行垂直扩展,即增加服务端的硬件资源(如CPU和内存等),以满足更高的并发需求。
  • 一致性:服务端负责维护数据的一致性,保证多个客户端对数据的并发操作不会导致数据的不一致性。

MySQL是典型的 C/S(Client/Server)架构,主要被分为客户端和服务端两部分。客户端只需发送请求并接收结果,将数据处理和存储的职责集中在服务器端,通过专门的服务器、高效的网络通信和并发控制机制(如锁、事务隔离级别等)支持,更适合处理在线业务的高并发读写场景。

但对于大规模数据的复杂计算场景,可能需要进行大量的计算和存储操作,这会给服务器带来较大的负载压力,如果服务器的计算能力有限或者无法有效扩展,可能无法满足大数据复杂计算的需求。另外,复杂计算往往涉及多个数据节点之间的交互和计算过程,需要进行并发控制和保证数据的一致性。在C/S架构中,这些并发控制和一致性的工作通常由服务器端负责,可能面临较高的竞争和冲突,导致性能下降或者数据不一致的问题。

SO,从DB架构设计上的差异而言,Apache Doris 适合做大数据的复杂计算,MySQL不适合。

三、数据结构差异

通常而言,数据库中索引的作用是做数据的快速检索,而快速检索的实现的本质是数据结构。基于不同数据结构的选择,实现各种数据快速检索。

在这里插入图片描述

Apache Doris 底层存储引擎提供了丰富的索引类型来提高数据查询效率。分别是 Short Key 前缀索引(快速扫描)、Ordinal 索引(索引加速)、Zone Map索引(快速定位)、BitMap 索引(人群圈选)、 Bloom Filter 索引(高基数等值查询)和倒排索引时(文本检索)等。前缀索引、Ordinal 索引和 Zone Map 索引不需要用户干预,会随着数据写入智能生成;Bitmap 索引、 Bloom Filter 索引和倒排索引需要用户干预,数据写入时默认不会生成,用户可以有选择地为指定的列添加这3种索引。

基于这些索引,Apache Doris 进行不同场景的大规模数据的复杂计算时,可谓事半功倍。

在这里插入图片描述

MySQL 底层数据引擎以插件形式设计,最常见的是 Innodb 引擎和 Myisam 引擎,用户可以根据个人需求选择不同的引擎作为 Mysql 数据表的底层引擎。这里,我们选择Innodb引擎来分析。

Innodb引擎以B+树作为索引的数据结构,从Hash、二叉树、红黑树、AVL树和B树推演而定。B+树节点存储的是索引,叶子节点是真正数据存储的地方,叶子节点用了链表连接起来,这个链表本身就是有序的,因此具有高效的范围查询,且能够支持快速的插入、删除、高并发访问等优点,但为什么不适合大数据的复杂计算场景?

  1. 磁盘I/O次数增多:随着数据的增加,B+树的高度会逐渐增加,这会导致查询时需要进行更多的磁盘I/O操作,从而影响查询效率。
  2. 索引维护成本增加:对于海量数据集,B+树索引的维护成本也会逐渐增加,例如插入、删除或者更新操作会导致索引的重构,从而影响数据处理的效率。
  3. 节点分裂频繁:在B+树索引中,节点分裂的次数与数据的分布情况有关。如果数据分布不均匀,节点分裂的频率就会增加,从而导致索引的重构和磁盘I/O负载增加。

SO,从数据结构设计上的差异而言,Apache Doris 适合做大数据的复杂计算,MySQL不适合。

四、存储结构差异

在这里插入图片描述

Apache Doris 默认为例存储(2.0支持行存高并发点查特性),相较于Mysql 主要是行存储模式,在大规模数据的复杂计算中更具优势:

  1. 数据压缩效率:列存储模式可以对每一列的数据进行独立的压缩,这样可以通过更好的压缩算法和跳过无关数据来减小存储空间,并且可以提高读取数据时的I/O效率。在行存储模式下,当使用通用的压缩算法对整行数据进行压缩时,由于不同列之间的数据类型和取值范围差异较大,通常较难获得很高的压缩比。
  2. 查询性能优化:在复杂计算中,通常需要对大量的列进行聚合、过滤和统计操作。列存储模式可以只读取涉及到的列数据,避免了读取不必要的数据,从而提高查询性能。在行存储模式中,进行聚合、过滤或者统计某些特定列的数值时,需要读取整行数据,包括不相关的列,导致读取了不必要的数据,影响了查询性能。
  3. 数据排列连续:列存储模式将同一列的数据放在一起存储,这样相同的数据类型可以连续存储,减少了存储的冗余。同时,列存储模式还可以使用更加紧凑的数据编码方式,进一步减少存储空间的占用。在行存储模式中,每行数据都包含多个列的数值,当表中存在大量的重复数据时,这些数据会被存储多次,从而导致存储冗余,影响查询效率。
  4. 并行处理能力:列存储模式可以更好地支持并行计算,在大规模数据复杂计算时可以充分利用多核和分布式计算资源,加速数据处理的速度。在行存储模式中,需要对大量行进行扫描和过滤的复杂查询场景下,由于每行数据都包含多个列的数值,需要同时访问大量行数据,可能会导致并行查询的效率下降。

SO,从存储结构设计上的差异而言,Apache Doris 适合做大数据的复杂计算,MySQL不适合。

五、总结

SO,Apache Doris 由于是分布式列存架构,且具有丰富的索引支撑,非常适用用于大数据场景下复杂的分析查询和决策支持等;MySQL 基于C/S 行存架构,结合 B+tree 能够高效地支持小规模数据频繁读写、快速响应在线业务,主要用于处理实时事务和业务操作,各有千秋!

【为什么Apache Doris适合做大数据的复杂计算,MySQL不适合?】 分享至此结束,查阅过程中若遇到问题欢迎留言交流。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/252267.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

819. 最常见的单词

819. 最常见的单词 Java:split() 过滤 class Solution {public String mostCommonWord(String paragraph, String[] banned) {String s paragraph.replaceAll("\\p{Punct}", " "); // 去除所有标点符号String arr[] s.split(" "…

OpenCV开发:MacOS源码编译opencv,生成支持java、python、c++各版本依赖库

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它为开发者提供了丰富的工具和函数,用于处理图像和视频数据,以及执行各种计算机视觉任务。 以下是 OpenCV 的一些主要特点和功能&#xff…

Apache Flume(3):数据持久化

1 使用组件 File Channel 2 属性设置 属性名默认值说明type-filecheckpointDir~/.flume/file-channel/checkpoint检查点文件存放路径dataDirs~/.flume/file-channel/data日志存储路径,多个路径使用逗号分隔. 使用不同的磁盘上的多个路径能提高file channel的性能 …

74hc244驱动数码管显示电路及程序

把七或八只发光二极管组合在一个模件上组成了个8字和小数点,用以显示数字。为了减少管脚,把各个发光管的其中同一个极接在一起作为共用点,因此就产生了共阳极和共阴极数码之说。共阳管就是把各个发光管的正极接在一起,而共阴管就刚…

PMI相关证书的获取步骤及注意内容

近几年很多行业的从业人员都在考取PMI项目管理相关证书,可在中国大陆地区参加考试的认证主要有:PMP, PgMP, PMI-RMP, PMI-ACP, PMI-PBA, CAPM。PfMP, PMI-SP尚未在中国大陆地区开放考试。 现整理该类证书的相关获取步骤及注意内容 一、证书获取步骤 S…

SOLIDWORKS编码重命名批量完成原来这么简单

每个公司都有自己的编码规则及命名规则,因此新产品设计完成之后,都需要对新设计的零部件进行重新编码及命名,今天我们来介绍一款提高编码及命名效率的插件—SolidKits.BatchCoding。 SolidKits.BatchCoding批量编码器是对于PDM的SolidKits分…

活动 | Mint Blockchain 将于 2024 年 1 月 10 号启动 MintPass 限时铸造活动

MintPass 是由 Mint Blockchain 官方发行的 Mint 网络和社区的 NFT 通行证,将在 2024 年 1 月份启动限时铸造活动。今天这篇文章会着重向大家介绍即将举办的 MintPass 活动的基础信息。 MintPass 有 2 种类型: 类型 1:Mint Genesis NFT Mint…

栈(C语言版)

一.栈的概念及结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。 进行数据插入和删除操作的一端 称为栈顶,另一端称为栈底。 栈中的数据元素遵守 后进先出 LIFO ( Last In First Out )的原则。…

人工智能导论复习资料

题型 1、简答题(5题) 2、设计题 3、综合题 4、论述题(10分) 考点 第一章 1、人工智能的定义、发展; 2、人工智能的学派、认知观及其间的关系; 3、人工智能要素及系统分类; 4、人工智能的研究、…

下午好~ 我的论文【CV边角料】(第三期)

文章目录 CV边角料Pixel ShuffleSENetCBAMGlobal Context Block (GC)Criss-Cross Attention modules (CC) CV边角料 Pixel Shuffle Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network pixelshuffle算法的实现流…

八大排序——快速排序(霍尔 | 挖空 | 前后指针 | 非递归)

我们今天来讲讲八大排序中的快速排序,快速排序最明显的特点就是排序快,时间复杂度是O(N* logN),但是坏处就是如果排序的是一个逆序的数组的时候,时间复杂度是O(N^2),还不用我们的插入…

5.2 Java包装类

5.2 包装类 1. 介绍2. 基本数据类型和包装类之间的转换2.1 装箱2.2 拆箱3. 字符串与包装类相互转换 3. 其他3.1 基本类型初始值3.2 包装类的默认值3.3 包装类对象之间的比较 1. 介绍 2. 基本数据类型和包装类之间的转换 2.1 装箱 基本数据类型转包装类 //装箱:把基…

代码随想录算法训练营第二十四天(回溯算法篇)|理论基础,77. 组合

结束了二叉树的篇章,我们进入到回溯啦! 学习资料:代码随想录 (programmercarl.com) 理论基础 回溯算法又称回溯搜算算法,是一种搜索方法。 作为递归的“副产品”,只要右递归的地方就会有对应的回溯的过程。 回溯算…

Python往事:ElementTree的单引号之谜

最近在针对某款设备的界面xml进行更新过程中,被告知回稿的字串放在了一个excel文件中,而我要上传到服务器的界面用语是用xml文件封装的。再经过详细求证了翻译组提供excel文件的原因后,我决定用python来完成界面用语xml的更新,但是…

【深度学习目标检测】八、基于yolov5的抽烟识别(python,深度学习)

YOLOv5是目标检测领域一种非常优秀的模型,其具有以下几个优势: 1. 高精度:YOLOv5相比于其前身YOLOv4,在目标检测精度上有了显著的提升。YOLOv5使用了一系列的改进,如更深的网络结构、更多的特征层和更高分辨率的输入图…

一些关于fMRI脑数据的预处理工具

一些关于fMRI脑数据的预处理工具 前言概述SPM12工具箱FSL工具箱FreeSurfer工具箱BrainNet Viewer工具箱circularGraph工具箱Nipype集成框架fMRIPrep集成框架参考文献 前言 March 25, 2022 这里是关于fMRI脑数据的预处理工具的相关调研 主要是关于数据的预处理,数据…

C语言之冒泡排序

排序&#xff08;sort&#xff09;就是以一定的基准&#xff0c;将数据按照升序&#xff08;从小到大&#xff09;或降序&#xff08;从大到小&#xff09;重新排列。 冒泡排序法 我们用一段程序来演示。 /*读取学生的身高并排序*/ #include<stdio.h>#define NUMBER 5…

HPM6750系列--第十篇 时钟系统

一、目的 上一篇中《HPM6750系列--第九篇 GPIO详解&#xff08;基本操作&#xff09;》我们讲解了HPM6750 GPIO相关内容&#xff0c;再进一步讲解其他外设功能之前&#xff0c;我们有必要先讲解一下时钟系统。 时钟可以说是微控制器系统中的心脏&#xff0c;外设必须依赖时钟才…

独立看门狗 IWDG

看门狗介绍 "看门狗"通常指的是计算机科学和信息技术领域中的一种技术或设备&#xff0c;用于监控系统的运行状态&#xff0c;并在系统出现故障或异常情况时采取相应的措施。这种技术或设备起到类似于守卫的作用&#xff0c;确保系统的稳定性和可靠性。 在计算机系统…

算法通关村第十二关—字符串冲刺题(黄金)

字符串冲刺题 一、最长公共前缀 LeetCode14 编写一个函数来查找字符串数组中的最长公共前缀。如果不存在公共前缀&#xff0c;返回空字符串"" 示例1&#xff1a; 输入&#xff1a;strs["flower","fLow","flight"] 输出&#xff1a;&…