linux性能优化-上下文切换

如何理解上下文切换

Linux 是一个多任务操作系统,它支持远大于 CPU 数量的任务同时运行,这是通过频繁的上下文切换、将CPU轮流分配给不同任务从而实现的。
CPU 上下文切换,就是先把前一个任务的 CPU 上下文(CPU 寄存器和程序计数器)保存起来,然后加载 新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置,运行新任务,而保存下来的上下文, 会存储在系统内核中,并在任务重新调度执行时再次加载进来。

上下文切换的时机

  • 根据调度策略,将CPU时间划片为对应的时间片,当时间片耗尽,就需要进行上下文切换
  • 进程在系统资源不足,会在获取到足够资源之前进程挂起
  • 进程通过sleep函数将自己挂起
  • 当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行, 也就是被抢占
  • 当发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。

上下文切换分类

我们之前讲过的任务到底是什么呢?

  • 进程和线程是最常见的任务
  • 硬件通过触发信号,会导致中断处理程序的调用,也是一种常见的任务

所以,根据任务的不同,CPU 的上下文切换可以分为不同的场景

  • 进程上下文切换
  • 线程上下文切换
  • 中断上下文切换

系统调用

Linux 按照特权等级划分进程的运行空间

  • **内核空间(Ring 0):**具有最高权限,可以直接访问所有资源
  • **用户空间(Ring 3):**只能访问受限资源,不能直接访问内存等硬件设备,必须通过系统调用陷入到内核中,才能访问这些特权资源。

image.png
进程既可以在用户空间运行,又可以在内核空间中运行。进程在用户空间运行时,被称为进程的用户态,而陷入内 核空间的时候,被称为进程的内核态。 从用户态到内核态的转变,需要通过系统调用来完成。
系统调用举例:
当我们查看文件内容时, 需要多次系统调用来完成:

  1. 首先调用 open() 打开文件,
  2. 然后调用 read() 读取文件内容,
  3. 并调用 write() 将内容写到标准输出,
  4. 最后再调用 close() 关闭文件。

系统调用的过程有没有发生 CPU 上下文的切换呢?答案自然是肯定的

  1. CPU 寄存器里原来用户态的指令位置,需要先保存起来
  2. 为了执行内核态代码,CPU 寄存器需要更新为内核态指令的新位置
  3. 最后才是跳转到内核态运行内核任务
  4. 系统调用结束后,CPU 寄存器需要恢复原来保存的用户态
  5. 然后再切换回用户空间,继续运行进程

**系统调用和进程上下文切换的不同 **

  • **进程上下文切换:**从一个进程切换到另一个进程运行
  • **系统调用:**一直是同一个进程在运行
  • 系统调用过程通常称为特权模式切换,而不是上下文切换
  • 系统调用过程中, CPU 上下文切换是无法避免的

进程上下文切换

在 Linux 中,进程是由内核来管理和调度进程的,切换只能发生在内核态,进程的上下文不仅包括了 虚拟内存 、栈 、全局变量 等用户空间的资源,还包括了 内核堆栈、寄存器 等内核空间的资源。
**进程上下文切换: **

  • 在保存当前进程的内核状态和 CPU 寄存器之前,需要先把该进程的虚拟内存、栈等保存下来【保存上下文**】 **
  • 而加载了下一进程的内核态后,还需要刷新进程的虚拟内存和用户栈【加载上下文】

image.png
什么时候会切换进程上下文

  • 顾名思义,只有在进程切换时才需要切换上下文
  • 换句话说,只有在进程调度时才需要切换上下文

CPU 如何挑选进程来运行?

  • Linux 为每个 CPU 都维护了一个等待队列 ;
  • 将活跃进程(正在运行和正在等待 CPU 的进程)按照优先级和等待 CPU 的时间排序 ;
  • 然后选择最需要 CPU 的进程,也就是优先级最高和等待 CPU 时间最长的进程来运行。

**进程上下文切换如何影响系统性能 **
每次上下文切换都需要几十纳秒到数微秒的 CPU 时间。这个时间还是相当可观的,特别是在进程上下文切换次数较多的情况下,很容易导致 CPU 将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。这也正是上一节中我们所讲的,导致平均负载升高的一个重要因素。

线程上下文切换

线程是调度的基本单位,而进程则是资源拥有的基本单位。 所谓内核中的任务调度,实际上的调度对象是线程;而进程只是给线程提供了虚拟内存、全局变量等资源。
线程的上下文切换其实就可以分为两种情况:
第一种:前后两个线程属于不同进程。此时,因为资源不共享,所以切换过程就跟进程上下文切换是一样。
第二种:前后两个线程属于同一个进程。此时,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据。

中断上下文切换

硬件通过触发信号,向CPU发送中断信号,导致内核调用中断处理程序,进入内核空间。这个过程中,硬件的一些变量和参数也要传递给内核, 内核通过这些参数进行中断处理。 中断处理会打断进程的正常调度和执行,而在打 断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。
例如:A进程启动写磁盘操作,A进程睡眠后B进程在运行,当磁盘写完后磁盘中断信号打断的是B进程,在中断处理时会唤醒A进程。
进程上下文 VS 中断上下文

  • 内核可以处于两种上下文:进程上下文和中断上下文;
  • 即便中断过程打断了 一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户态资源;
  • 中断上下文,只包括内核态中断服务程序执行所必需的状态,包括CPU 寄存器、内核堆栈、硬件中断参数;
  • 中断上下文不会和进程上下文切换同时发生;
  • 对同一个 CPU 来说,中断处理比进程拥有更高的优先级;
  • 由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。

耗资源程度

  • 跟进程上下文切换一样,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能;
  • 当发现中断次数过多时,就需要注意去排查它是否会给你的系统带来严重的性能问题。

查看上下文切换

如何来查看上下文切换呢?我们可以使用 vmstat 这个工具,来查询系统的上下文切换情况 。
vmstat是一个常用的系统性能分析工具,主要用来分析系统的内存使用情况,也常用来分析CPU上下文切换和中断的次数 。
1)系统总的上下文切换情况

#vmstat n n秒后输出一行信息
[root@centos7-2 ~]# vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 299304 2108 155296 0 0 362 29 181 210 1 4 95 0 0
0 0 0 299288 2108 155296 0 0 0 0 187 165 1 0 100 0 0
0 0 0 299288 2108 155296 0 0 0 0 173 157 0 0 100 0 0
0 0 0 299288 2108 155296 0 0 0 0 165 160 0 1 100 0 0
0 0 0 299288 2108 155296 0 0 0 0 181 169 0 0 100 0 0
0 0 0 299288 2108 155296 0 0 0 0 181 162 0 1 100 0 0
0 0 0 299288 2108 155296 0 0 0 0 150 155 0 0 100 0 0
0 0 0 299288 2108 155296 0 0 0 0 150 158 0 1 100 0 0

image.png
重点强调下,需要特别关注的四列内容:
cs(context switch)是每秒上下文切换的次数。
in(interrupt)则是每秒中断的次数。
r(Running or Runnable)是就绪队列的长度,也就是正在运行和等待 CPU 的进程数。
b(Blocked)则是处于不可中断睡眠状态的进程数。
vmstat 只给出了系统总体的上下文切换情况,要想查看每个进程的详细情况,就需要使用我们前面提到过的 pidstat了。给它加上 -w 选项,你就可以查看每个进程上下文切换的情况了。

pidstat [ 选项 ] [ <时间间隔> ] [ <次数> ]
-u:默认的参数,显示各个进程的cpu使用统计
-r:显示各个进程的内存使用统计
-d:显示各个进程的IO使用情况
-p:指定进程号
-w:显示每个进程的上下文切换情况
-t:显示选择任务的线程的统计信息外的额外信息
[root@centos7-2 ~]# pidstat -w -u 3
Linux 3.10.0-693.el7.x86_64 (centos7-2) 2020年11月27日 _x86_64_ (2 CPU)
14时53分11秒 UID PID %usr %system %guest %wait %CPU CPU Command
14时53分14秒 0 1375 0.33 0.33 0.00 0.00 0.66 0 pidstat
14时53分11秒 UID PID cswch/s nvcswch/s Command
14时53分14秒 0 3 0.33 0.00 ksoftirqd/0
14时53分14秒 0 6 1.32 0.00 kworker/u256:0
14时53分14秒 0 9 4.64 0.00 rcu_sched
14时53分14秒 0 10 0.33 0.00 watchdog/0
14时53分14秒 0 11 0.33 0.00 watchdog/1
14时53分14秒 0 13 0.33 0.00 ksoftirqd/1
14时53分14秒 0 14 0.99 0.00 kworker/1:0
14时53分14秒 0 46 0.33 0.00 kworker/0:2
14时53分14秒 0 409 19.87 0.00 xfsaild/dm-0
14时53分14秒 0 654 10.26 0.00 vmtoolsd
14时53分14秒 0 720 0.33 0.00 kworker/1:1H
14时53分14秒 89 1175 0.33 0.00 qmgr
14时53分14秒 89 1274 0.33 0.00 cleanup
14时53分14秒 89 1280 0.99 0.00 trivial-rewrite
14时53分14秒 0 1305 0.33 0.00 sshd
14时53分14秒 0 1348 2.32 0.00 kworker/0:3
这个结果中有两列内容是我们的重点关注对象

image.png
这个结果中有两列内容是我们的重点关注对象。
一个是 cswch ,表示每秒自愿上下文切换(voluntary context switches)的次数,另一个则是 nvcswch ,表示每秒非自愿上下文切换(non voluntary context switches)的次数。

  • 所谓自愿上下文切换,是指进程无法获取所需资源,导致的上下文切换。比如说, I/O、内存等系统资源不足时,就会发生自愿上下文切换。
  • 而非自愿上下文切换,则是指进程由于时间片已到等原因,被系统强制调度,进而发生的上下文切换。比如说,大量进程都在争抢CPU时,就容易发生非自愿上下文切换。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/250652.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

关于技术架构的思考

技术选型实则是取舍的艺术 这句话是我偶然在一篇技术架构方面的文章上看到的&#xff0c;每当我需要给新项目进行技术选型&#xff0c;决定技术架构时&#xff0c;一直坚信的。 当我们做技术选型时&#xff0c;需要考虑的东西非常多。比如&#xff0c;用关系型数据库还是非关…

怎么解决bash: composer: command not found问题

是不是遇到过bash: composer: command not found问题&#xff0c;怎么解决呢&#xff1f;下面由composer教程栏目给大家来详细介绍该问题的解决方法。 1、先看报错 2、由于错误的原因&#xff0c;安装很多东西都失败了。网上有的说是环境变量的问题&#xff0c;又一个个找也没…

面向对象三大特征之二:继承

继承的快速入门 什么是继承&#xff1f; Java中提供了一个关键字extends&#xff0c;用这个关键字&#xff0c;可以让一个类与另一个类建立起父子关系 继承的特点 子类能继承父类的非私有成员&#xff08;成员变量、成员方法&#xff09; 继承后对象的创建 子类的对象是由…

认知能力测验,①如何破解数字推理类测试题?

校园招聘&#xff08;秋招春招&#xff09;&#xff0c;最为常见的认知能力测验&#xff0c;在线工具网将整理分析关于认知能力测验的系列文章&#xff0c;希望能帮助大家顺利通过认知能力测评&#xff0c;找到自己心仪的工作。 数字推理测试&#xff0c;是我们在求职中经常会…

中通单号查询,中通快递物流查询,对需要的单号进行备注

批量查询中通快递单号的物流信息&#xff0c;对需要的单号进行备注。 所需工具&#xff1a; 一个【快递批量查询高手】软件 中通快递单号若干 操作步骤&#xff1a; 步骤1&#xff1a;运行【快递批量查询高手】软件&#xff0c;并登录 步骤2&#xff1a;点击主界面左上角的“…

袋鼠目标检测数据集VOC+YOLO格式1400多张

袋鼠是双门齿目袋鼠亚目袋鼠科大袋鼠属的哺乳动物。袋鼠跳得最高、最远。雌性袋鼠都长有一个前开的育儿袋&#xff0c;袋鼠也因此得名。 [8]袋鼠泛指任一种属于袋鼠目的有袋动物&#xff0c; [7]它头小眼大耳朵长&#xff0c;面部较长&#xff0c;鼻孔两侧有黑色须痕。袋鼠胆小…

Python函数和模块的使用

我的博客 文章首发于公众号&#xff1a;小肖学数据分析 在开发过程中&#xff0c;函数和模块帮助我们将复杂的代码逻辑分解为可管理的部分&#xff0c;提升代码的可读性、可维护性和重用性。 本文将介绍如何在Python中有效利用函数和模块&#xff0c;提供详细的示例。 函数的…

《Linux C编程实战》笔记:一些系统调用

目录 dup和dup2函数 fcntl函数 示例程序1 示例程序2 ioctl函数 dup和dup2函数 #include <unistd.h> int dup(int oldfd); int dup2(int oldfd, int newfd): dup 函数复制 oldfd 参数所指向的文件描述符。 参数&#xff1a; oldfd&#xff1a;要复制的文件描述符的…

Spring Cloud Alibaba

文章目录 Spring Cloud Alibaba1 介绍2 Nacos&#xff08;注册中心和配置中心&#xff09;2.1 示例 3 Sentinel&#xff08;流量控制和熔断降级&#xff09;3.1 流量控制示例 4 GateWay4.1 断言4.2 过滤器4.2.1 局部过滤器4.2.2 全局过滤器 4.3 网关限流 5 链路追踪Sleuth Spri…

QT案例 使用WMI获取win_32类的属性值,包括Win32提供程序类中的属性

最近涉及到读取WINDOWS 系统电脑设备的各种信息&#xff0c;在一些特殊的PE或者简化系统中是没有WMI查询工具的&#xff0c;所以就自己写了个查询大部分WMI属性值的工具&#xff0c;免去了查网站的功夫。涉及到的方法内容就汇总做个总结。 PS:因为工作中软件基本都是我一个人开…

改进lora-scripts,支持SDXL训练,以及启动脚本

分享下自己改进的一个lora训练脚本&#xff0c;在ubuntu下如果SD-WEBUI的环境已经搭好的话&#xff0c;只需要下载lora-script就可以支持训练了&#xff0c;直接命令行方式训练。 首先&#xff0c;我们需要克隆下项目&#xff1a; git clone https://github.com/Akegarasu/lo…

docker安装Prometheus

docker安装Prometheus Docker搭建Prometheus监控系统 环境准备(这里的环境和版本是经过测试没有问题,并不是必须这个版本) 主机名IP配置系统说明localhost随意2核4gCentOS7或者Ubuntu20.0.4docker版本23.0.1或者24.0.5,docker-compose版本1.29 安装Docker Ubuntu20.0.4版本…

NO-IOT翻频,什么是翻频,电信为什么翻频

1.1 翻频迁移最终的目的就是减少网络的相互干扰&#xff0c;提供使用质量. 1.2 随着与日俱增的网络规模的扩大&#xff0c;网内干扰已成了影响网络的质量标准之一&#xff0c;为了保障电信上网体验&#xff0c;满足用户日益增长的网速需求,更好的服务客户&#xff0c;电信针对…

JAVAEE大型金融支付-第1章-讲义-项目介绍

第1章 讲义-项目介绍与环境搭建 1.项目背景 1.1 项目背景 随着移动支付的盛行&#xff0c;商业银行、第三方支付公司、其它清算机构、消费金融公司等众多类型的机构&#xff0c;都在为商户 提供网络&#xff08;移动&#xff09;支付解决方案。另一方面&#xff0c;用户的支…

视频推拉流平台EasyDSS点播文件播放请求添加token验证的实现方法

EasyDSS视频直播点播平台可提供一站式的视频推拉流、转码、点播、直播、播放H.265编码视频等服务&#xff0c;搭配RTMP高清摄像头使用&#xff0c;可将设备的实时流推送到平台上&#xff0c;实现无人机视频推流直播等应用。今天我们来介绍下EasyDSS系统点播文件播放请求添加tok…

谷歌的开源供应链安全

本内容是对Go项目负责人Russ Cox 在 ACM SCORED 活动上演讲内容[1]的摘录与整理。 SCORED 是Software Supply Chain Offensive Research and Ecosystem Defenses的简称, SCORED 23[2]于2023年11月30日在丹麦哥本哈根及远程参会形式举行。 摘要 &#x1f4a1; 谷歌在开源软件供应…

Tor网络原理详解

引入 匿名通信是一种通过采用数据转发、内容加密、流量混淆等措施来隐藏通信内容及关系的隐私保护技术。为了提高通信的匿名性&#xff0c;这些数据转发链路通常由多跳加密代理服务节点构成&#xff0c;而所有这些节点即构成了匿名通信系统&#xff08;或称匿名通信网络&#…

Flask学习四:补充

插件 flask-caching 简介 Flask-Caching 是一个 Flask 扩展&#xff0c;旨在为 Flask 应用程序添加缓存功能。缓存是一种提高应用性能的技术&#xff0c;通过将常用数据暂时存储在一个快速访问的位置&#xff08;如内存或磁盘&#xff09;&#xff0c;从而减少对较慢资源&…

【Nginx】Nginx了解(基础)

文章目录 Nginx产生的原因Nginx简介Nginx的作用反向代理负载均衡策略动静分离 Nginx的Windows下的安装Linux下的安装Nginx常用命令 负载均衡功能演示 Nginx产生的原因 背景 一个公司的项目刚刚上线的时候&#xff0c;并发量小&#xff0c;用户使用的少&#xff0c;所以在低并发…