解决ES伪慢查询

一、问题现象

服务现象

服务接口的TP99性能降低

ES现象

  • YGC:耗时极其不正常, 峰值200+次,耗时7s+
  • FULL GC:不正常,次数为1但是频繁,STW 5s
  • 慢查询:存在慢查询5+

二 解决过程

1、去除干扰因素

  • 从现象上看应用是由于某种原因导致JVM内存使用率不断增长,触发了频繁的YGC进而触发FGC(此时只是大胆的猜测)。
  • 此时ES的JVM配置是JVM内存40G,使用CMS垃圾回收器。40G的内存使用CMS垃圾回收器性能显然不如G1更合适
  • 找ES运维同学垃圾回收器由CMS修改为G1

(tips:不是所有的ES都适合G1,针对很多大查询的G1的Full GC会导致GC模式退化为串行扫描整个堆,导致几十秒甚至是分钟级别的暂停。这种长时间的暂停不仅影响用户的查询,还容易造成节点间的通信超时,导致master、dataNode脱离集群,影响集群稳定性。)

修改为G1后的GC变化:

  • YGC:耗时极正常, 峰值35+次,耗时800ms
  • FULL GC:正常,次数为0
  • 慢查询:存在慢查询10+

2、查找问题

ES的JVM垃圾回收器调整后,杰夫接口的服务接口的性能并没有因为GC问题的解决而解决。

  • 通过和ES侧同学的沟通了解到,这个ES集群的refresh极其异常,refresh:2w+。

  • ES监控中的慢查询语句单独去执行并不慢

原因:

应用中和ES的交互使用的是3.1.9.RELEASE 版本的spring-data-elasticsearch的包,ES数据同步工作是通过该API的中的save方法进行保存数据的,如下图所示,该版本的save操作每次save后都会进行refresh操作

<groupId>org.springframework.data</groupId>
<artifactId>spring-data-elasticsearch</artifactId>
<version>3.1.9.RELEASE</version>

为什么每次refresh会对查询产生影响呢,今天咱们也赶个时髦,让GPT给咱们回复下试试:

3、修复方案

  • 升级spring-data-elasticsearch 的版本到4.x以上,由于spring-data-elasticsearch高本版不兼容低版本改动成本较大,该项目中的所有涉及API操作的地方都需要改动

  • save操作改用operation进行操作(目前选择的该方案,改动较少)

慢查询已经消失

refresh的次数也降了下来

三、问题解决

最终的业务服务接口性能正常了。

教员常说我们总是被经验主意和投机主义左右我们的思想,破局这一问题的根本解决方式是只有实事求是,实践是真理的标准。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/250120.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

小红书商品详情API:电商助力

一、引言 随着互联网的普及和电商行业的快速发展&#xff0c;消费者对于商品信息的获取方式也在不断变化。小红书作为一款以内容分享为主的社交电商平台&#xff0c;吸引了大量用户。为了满足用户对商品信息的快速获取需求&#xff0c;小红书提供了商品详情API接口。本文将探讨…

Linux 基本语句_15_Tcp并发服务器

原理&#xff1a; 利用父子进程。父进程接收客户端的连接请求&#xff0c;子进程处理客户端的数据处理操作&#xff0c;两者各施其职。最终实现能够多个客户端连接一个服务端的操作。 代码&#xff1a; 服务端代码&#xff1a; #include <stdio.h> #include <sys/…

初级数据结构(五)——树和二叉树的概念

文中代码源文件已上传&#xff1a;数据结构源码 <-上一篇 初级数据结构&#xff08;四&#xff09;——队列 | NULL 下一篇-> 1、树结构&#xff08;Tree&#xff09; 1.1、树结构的特点 自然界中的树由根部开始向上生长&#xff0c;随机长出分支&…

聊天系统UDP TCP

服务端 package work; import java.net.DatagramPacket; import java.net.DatagramSocket; import java.util.ArrayList; import java.util.List; public class UDPServer { private static final int PORT 9876; private static List<ClientInfo> clients …

极简Excel公式拆分合并单元格并自动填充

例如这个表格&#xff1a; 我们希望拆分合并单元格&#xff0c;并填充到E列。结果如&#xff1a; 步骤 1&#xff09;在E2输入公式如下&#xff1a; LOOKUP(2,1/($B$2:B2<>""),$B$2:B2) 2&#xff09;下拉E2至E9将公式填充即可 注意&#xff1a;公式中的$…

分布式事务--初识Seata和TC部署

1.Seata介绍 Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务&#xff0c;为用户打造一站式的分布式解决方案。 官网地址&#xff1a;Seata | Seata&#xff0c;其中的文档、播客中提供了大量的使用说明…

Hudi 在 vivo 湖仓一体的落地实践

作者&#xff1a;vivo 互联网大数据团队 - Xu Yu 在增效降本的大背景下&#xff0c;vivo大数据基础团队引入Hudi组件为公司业务部门湖仓加速的场景进行赋能。主要应用在流批同源、实时链路优化及宽表拼接等业务场景。 一、Hudi 基础能力及相关概念介绍 1.1 流批同源能力 与H…

Windows系统下载安装并连接Redis

首先 我们访问地址 https://github.com/tporadowski/redis/releases 这里 我们根据自己的系统选择下载 我是 Windows msi安装包 下载下来之后 我们双击它运行 然后下一步 然后这里要同意它的条款 反正不同意不给用嘛 就这么简单 勾选之后 选择下一步 这里 我们要选一下他的安装…

Angular中使用Intersection Observer API实现无限滚动

背景&#xff1a; 实现原理为 在data下面加一个loading元素 如果此元素进入视窗 则调用api获取新的数据加到原来的数据里面&#xff0c;这时loading就会被新数据顶下去&#xff0c;如此循环。 <div id"dataContainer"></div> <div id"loadingCo…

大模型微调技巧:在 Embeeding 上加入噪音提高指令微调效果

大家好&#xff0c;在去年分享过一篇ACL2022的文章&#xff0c;通过微调前给预训练模型参数增加噪音提高预训练语言模型在下游任务的效果方法。NoisyTune方法在BERT、XLNET、RoBERTa和ELECTRA上均取得不错的效果。 那么通过加入噪音的方式&#xff0c;对现在大型语言模型是否有…

数字图像处理(实践篇)二十三 使用dlib进行人脸68关键点检测

目录 1 安装dlib 2 下载shape_predictor_68_face_landmarks.dat文件 3 涉及的函数 4 实践 使用dlib进行人脸68关键点检测实践。 1 安装dlib 使用如下命令即可安装dlib: pip install dlib

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(六)

系列文章目录 基于CNN数据增强残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)数据集模型&#xff08;一&#xff09; 基于CNN数据增强残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)数据集模型&#xf…

UE4 实用材质图形

渐变圆 光晕效果&#xff1a; 十字光晕&#xff1a;

动态通讯录(并不难都能拿下)

文章目录 &#x1f680;前言&#x1f680;通讯录实现动态通讯录的初期准备模块化框架搭建 &#x1f680;实现接口函数 &#x1f680;前言 铁子们好啊&#xff01;今天咱们来整一个有意思的玩意——通讯录&#xff0c;相信大家对通讯录并不陌生&#xff0c;那接下来就跟着阿辉把…

机械设备企业网站建设的效果如何

机械设备涵盖的类目比较广&#xff0c;其市场需求也是稳增不减&#xff0c;也因此无论大小企业都有增长的机会&#xff0c;当然这也需要靠谱的工具及正确的决策。 对机械设备企业来说&#xff0c;产品品质自然是首位&#xff0c;而向外打造品牌、扩展信息及拓客转化自然也是非…

HarmonyOS NEXT:技术革新与生态挑战的交汇点

背景 在上周&#xff08;2023年12月11日&#xff09;我有幸参加了在上海举办的华为鸿蒙生态学堂创新实训营。 参加这个活动的原因是近期关于华为的HarmonyOS NEXT不再兼容Android的消息&#xff0c;也就是说我们的Apk无法在纯血版的HarmonyOS NEXT上运行。 随后就是一些头部的…

opencv中叠加Sobel算子与Laplacian算子实现边缘检测

1 边缘检测介绍 图像边缘检测技术是图像处理和计算机视觉等领域最基本的问题&#xff0c;也是经典的技术难题之一。如何快速、精确地提取图像边缘信息&#xff0c;一直是国内外的研究热点&#xff0c;同时边缘的检测也是图像处理中的一个难题。早期的经典算法包括边缘算子方法…

windows10 php8连接sql server

一、环境安装 文章目录 一、环境安装1.安装php拓展2.在 Windows 上安装PHP驱动程序3.在 Windows 上安装ODBC驱动 二、php连接sqlserver三、注意事项数据库相关设置相关语法sqlsrv_fetch_array 的示例&#xff1a;sqlsrv_fetch 的示例&#xff1a;echo 和 print_r 的不同 所用资…

数据结构 | 查漏补缺之顺式存储和链式存储、如何评价哈希函数的好坏、链地址法、树的遍历、关键路径、完全图、连通图、迪杰斯特拉、b树

目录 顺式存储和链式存储 优缺点比较 顺序存储 ​编辑 链式存储 如何评价哈希函数的好坏 简述哈希查找中链地址法解决冲突的方法 树的遍历 关键路径 完全图 连通图 迪杰斯特拉 b树 特点&#xff1a; 插入&#xff08;索引不能大于&#xff1a;最大为 M-1 个&#…

TrustGeo代码理解(六)utils.py

代码链接:https://github.com/ICDM-UESTC/TrustGeo 一、导入常用库和模块 from __future__ import print_function from distutils.version import LooseVersion from matplotlib.scale import LogisticTransform import numpy as np import torch import warnings import t…