Hudi 在 vivo 湖仓一体的落地实践

作者:vivo 互联网大数据团队 - Xu Yu

在增效降本的大背景下,vivo大数据基础团队引入Hudi组件为公司业务部门湖仓加速的场景进行赋能。主要应用在流批同源、实时链路优化及宽表拼接等业务场景。

一、Hudi 基础能力及相关概念介绍

1.1 流批同源能力

与Hive不同,Hudi数据在Spark/Flink写入后,下游可以继续使用Spark/Flink引擎以流读的形式实时读取数据。同一份Hudi数据源既可以批读也支持流读。

Flink、Hive、Spark的流转批架构:

图片

Hudi流批同源架构:

图片

1.2 COW和MOR的概念

Hudi支持COW(Copy On Write)和MOR(Merge On Read)两种类型:

(1)COW写时拷贝

每次更新的数据都会拷贝一份新的数据版本出来,用户通过最新或者指定version的可以进行数据查询。缺点是写入的时候往往会有写内存放大的情况,优点是查询不需要合并,直接读取效率相对比较高。JDK中的CopyOnWriteArrayList/CopyOnWriteArraySet 容器正是采用了 COW 思想。

COW表的数据组织格式如下:

图片

(2)MOR读时合并:

每次更新或者插入新的数据时,并写入parquet文件,而是写入Avro格式的log文件中,数据按照FileGroup进行分组,每个FileGroup由base文件(parquet文件)和若干log文件组成,每个FileGroup有单独的FileGroupID;在读取的时候会在内存中将base文件和log文件进行合并,进而返回查询的数据。缺点是合并需要花费额外的合并时间,查询的效率受到影响;优点是写入的时候效率相较于COW快很多,一般用于要求数据快速写入的场景。

MOR数据组织格式如下:

图片

1.3 Hudi的小文件治理方案

Hudi表会针对COW和MOR表制定不同的文件合并方案,分别对应Clustering和Compaction。

Clustering顾名思义,就是将COW表中多个FileGroup下的parquet根据指定的数据大小重新编排合并为新的且文件体积更大的文件块。如下图所示:

图片

Compaction即base parquet文件与相同FileGroup下的其余log文件进行合并,生成最新版本的base文件。如下图所示:

图片

1.4 周边引擎查询Hudi的原理

当前主流的OLAP引擎等都是从HMS中获取Hudi的分区元数据信息,从InputFormat属性中判断需要启动HiveCatalog还是HudiCatalog,然后生成查询计划最终执行。当前StarRocks、Presto等引擎都支持以外表的形式对Hudi表进行查询。

图片

1.5 Procedure介绍

Hudi 支持多种Procedure,即过程处理程序,用户可以通过这些Procedure方便快速的处理Hudi表的相关逻辑,比如Compaction、Clustering、Clean等相关处理逻辑,不需要进行编码,直接通过sparksql的语句来执行。

1.6 项目架构

1. 按时效性要求进行分类

秒级延迟:

图片

分钟级延迟:

图片

当前Hudi主要还是应用在准实时场景

上游从Kafka以append模式接入ods的cow表,下游部分dw层业务根据流量大小选择不同类型的索引表,比如bucket index的mor表,在数据去重后进行dw构建,从而提供统一数据服务层给下游的实时和离线的业务,同时ods层和dw层统一以insert overwrite的方式进行分区级别的容灾保障,Timeline上写入一个replacecommit的instant,不会引发下游流量骤增,如下图所示:

图片

1.7 线上达成能力

实时场景:

支持1亿条/min量级准实时写入;流读延迟稳定在分钟级

离线场景:

支持千亿级别数据单批次离线写入;查询性能与查询Hive持平(部分线上任务较查询Hive提高20%以上)

小文件治理:

95%以上的合并任务单次执行控制在10min内完成

二、组件能力优化

2.1 组件版本

当前线上所有Hudi的版本已从0.12 升级到 0.14,主要考虑到0.14版本的组件能力更加完备,且与社区前沿动态保持一致。

2.2 流计算场景

1. 限流

数据积压严重的情况下,默认情况会消费所有未消费的commits,往往因消费的commits数目过大,导致任务频繁OOM,影响任务稳定性;优化后每次用户可以摄取指定数目的commits,很大程度上避免任务OOM,提高了任务稳定性。

图片

2. 外置clean算子

避免单并行度的clean算子最终阶段影响数据实时写入的性能;将clean单独剥离到

compaction/clustering执行。这样的好处是单个clean算子,不会因为其生成clean计划和执行导致局部某些Taskmanager出现热点的问题,极大程度提升了实时任务稳定性。

图片

3. JM内存优化

部分大流量场景中,尽管已经对Hudi进行了最大程度的调优,但是JM的内存仍然在较高水位波动,还是会间隔性出现内存溢出影响稳定性。这种情况下我们尝试对 state.backend.fs.memory-threshold 参数进行调整;从默认的20KB调整到1KB,JM内存显著下降;同时运行至今state相关数据未产生小文件影响。

图片

2.3 批计算场景

1. Bucket index下的BulkInsert优化

0.14版本后支持了bucket表的bulkinsert,实际使用过程中发现分区数很大的情况下,写入延迟耗时与计算资源消耗较高;分析后主要是打开的句柄数较多,不断CPU IO 频繁切换影响写入性能。

因此在hudi内核进行了优化,主要是基于partition path和bucket id组合进行预排序,并提前关闭空闲写入句柄,进而优化cpu资源使用率。

这样原先50分钟的任务能降低到30分钟以内,数据写入性能提高约30% ~ 40%。

优化前:

图片

优化后:

图片

2. 查询优化

0.14版本中,部分情况下分区裁剪会失效,从而导致条件查询往往会扫描不相关的分区,在分区数庞大的情况下,会导致driver OOM,对此问题进行了修复,提高了查询任务的速度和稳定性。

eg:select * from `hudi_test`.`tmp_hudi_test` where day='2023-11-20' and hour=23; 

(其中tmp_hudi_test是一张按日期和小时二级分区的表)

修复前:

图片

修复后:

图片

优化后不仅包括减少分区的扫描数目,也减少了一些无效文件RPC的stage。

3. 多种OLAP引擎支持

此外,为了提高MOR表管理的效率,我们禁止了RO/RT表的生成;同时修复了原表的元数据不能正常同步到HMS的缺陷(这种情况下,OLAP引擎例如Presto、StarRocks查询原表数据默认仅支持对RO/RT表的查询,原表查询为空结果)。

图片

2.4 小文件合并

1. 序列化问题修复

0.14版本Hudi在文件合并场景中,Compaction的性能相较0.12版本有30%左右的资源优化,比如:原先0.12需要6G资源才能正常启动单个executor的场景下,0.14版本 4G就可以启动并稳定执行任务;但是clustering存在因TypedProperties重复序列化导致的性能缺陷。完善后,clustering的性能得到30%以上的提升。

可以从executor的修复前后的火焰图进行比对。

修复前:

图片

修复后:

图片

2. 分批compaction/clustering

compaction/clustering默认不支持按commits数分批次执行,为了更好的兼容平台调度能力,对compaction/clustering相关procedure进行了改进,支持按批次执行。

同时对其他部分procedure也进行了优化,比如copy_to_table支持了列裁剪拷贝、delete_procedures支持了批量执行等,降低sparksql的执行时间。

3. clean优化

Hudi0.14 在多分区表的场景下clean的时候很容易OOM,主要是因为构建HoodieTableFileSystemView的时候需要频繁访问TimelineServer,因产生大量分区信息请求对象导致内存溢出。具体情况如下:

图片

对此我们对partition request Job做了相关优化,将多个task分为多个batch来执行,降低对TimelineSever的内存压力,同时增加了请求前的缓存判断,如果已经缓存的将不会发起请求。

改造后如下:

图片

此外实际情况下还可以在FileSystemViewManager构建过程中将 remoteview 和 secondview 的顺序互调,绝大部分场景下也能避免clean oom的问题,直接优先从secondview中获取分区信息即可。

2.5 生命周期管理

当前计算平台支持用户表级别生命周期设置,为了提高删除的效率,我们设计实现了直接从目录对数据进行删除的方案,这样的收益有:

  1. 降低了元数据交互时间,执行时间快;

  2. 无须加锁、无须停止任务;

  3. 不会影响后续compaction/clustering 相关任务执行(比如执行合并的时候不会报文件不存在等异常)。

删除前会对compaction/clustering等instants的元数据信息进行扫描,经过合法性判断后区分用户需要删除的目录是否存在其中,如果有就保存;否则直接删除。流程如下:

图片

三、总结

我们分别在流批场景、小文件治理、生命周期管理等方向做了相关优化,上线后的收益主要体现这四个方向:

  1. 部分实时链路可以进行合并,降低了计算和存储资源成本;

  2. 基于watermark有效识别分区写入的完成度,接入湖仓的后续离线任务平均SLA提前时间不低于60分钟;

  3. 部分流转批后的任务上线后执行时间减少约40%(比如原先执行需要150秒的任务可以缩短到100秒左右完成 ;

  4. 离线增量更新场景,部分任务相较于原先Hive任务可以下降30%以上的计算资源。

同时跟进用户实际使用情况,发现了一些有待优化的问题:

  1. Hudi生成文件的体积相较于原先Hive,体积偏大(平均有1.3 ~ 1.4的比例);

  2. 流读的指标不够准确;

  3. Hive—>Hudi迁移需要有一定的学习成本;

针对上述问题,我们也做了如下后续计划:

  1. 对hoodie parquet索引文件进行精简优化,此外业务上对主键的重新设计也会直接影响到文件体积大小;

  2. 部分流读的指标不准,我们已经完成初步的指标修复,后续需要补充更多实时的任务指标来提高用户体验;

  3. 完善Hudi迁移流程,提供更快更简洁的迁移工具,此外也会向更多的业务推广Hudi组件,进一步挖掘Hudi组件的潜在使用价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/250111.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Windows系统下载安装并连接Redis

首先 我们访问地址 https://github.com/tporadowski/redis/releases 这里 我们根据自己的系统选择下载 我是 Windows msi安装包 下载下来之后 我们双击它运行 然后下一步 然后这里要同意它的条款 反正不同意不给用嘛 就这么简单 勾选之后 选择下一步 这里 我们要选一下他的安装…

Angular中使用Intersection Observer API实现无限滚动

背景&#xff1a; 实现原理为 在data下面加一个loading元素 如果此元素进入视窗 则调用api获取新的数据加到原来的数据里面&#xff0c;这时loading就会被新数据顶下去&#xff0c;如此循环。 <div id"dataContainer"></div> <div id"loadingCo…

大模型微调技巧:在 Embeeding 上加入噪音提高指令微调效果

大家好&#xff0c;在去年分享过一篇ACL2022的文章&#xff0c;通过微调前给预训练模型参数增加噪音提高预训练语言模型在下游任务的效果方法。NoisyTune方法在BERT、XLNET、RoBERTa和ELECTRA上均取得不错的效果。 那么通过加入噪音的方式&#xff0c;对现在大型语言模型是否有…

数字图像处理(实践篇)二十三 使用dlib进行人脸68关键点检测

目录 1 安装dlib 2 下载shape_predictor_68_face_landmarks.dat文件 3 涉及的函数 4 实践 使用dlib进行人脸68关键点检测实践。 1 安装dlib 使用如下命令即可安装dlib: pip install dlib

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(六)

系列文章目录 基于CNN数据增强残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)数据集模型&#xff08;一&#xff09; 基于CNN数据增强残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)数据集模型&#xf…

UE4 实用材质图形

渐变圆 光晕效果&#xff1a; 十字光晕&#xff1a;

动态通讯录(并不难都能拿下)

文章目录 &#x1f680;前言&#x1f680;通讯录实现动态通讯录的初期准备模块化框架搭建 &#x1f680;实现接口函数 &#x1f680;前言 铁子们好啊&#xff01;今天咱们来整一个有意思的玩意——通讯录&#xff0c;相信大家对通讯录并不陌生&#xff0c;那接下来就跟着阿辉把…

机械设备企业网站建设的效果如何

机械设备涵盖的类目比较广&#xff0c;其市场需求也是稳增不减&#xff0c;也因此无论大小企业都有增长的机会&#xff0c;当然这也需要靠谱的工具及正确的决策。 对机械设备企业来说&#xff0c;产品品质自然是首位&#xff0c;而向外打造品牌、扩展信息及拓客转化自然也是非…

HarmonyOS NEXT:技术革新与生态挑战的交汇点

背景 在上周&#xff08;2023年12月11日&#xff09;我有幸参加了在上海举办的华为鸿蒙生态学堂创新实训营。 参加这个活动的原因是近期关于华为的HarmonyOS NEXT不再兼容Android的消息&#xff0c;也就是说我们的Apk无法在纯血版的HarmonyOS NEXT上运行。 随后就是一些头部的…

opencv中叠加Sobel算子与Laplacian算子实现边缘检测

1 边缘检测介绍 图像边缘检测技术是图像处理和计算机视觉等领域最基本的问题&#xff0c;也是经典的技术难题之一。如何快速、精确地提取图像边缘信息&#xff0c;一直是国内外的研究热点&#xff0c;同时边缘的检测也是图像处理中的一个难题。早期的经典算法包括边缘算子方法…

windows10 php8连接sql server

一、环境安装 文章目录 一、环境安装1.安装php拓展2.在 Windows 上安装PHP驱动程序3.在 Windows 上安装ODBC驱动 二、php连接sqlserver三、注意事项数据库相关设置相关语法sqlsrv_fetch_array 的示例&#xff1a;sqlsrv_fetch 的示例&#xff1a;echo 和 print_r 的不同 所用资…

数据结构 | 查漏补缺之顺式存储和链式存储、如何评价哈希函数的好坏、链地址法、树的遍历、关键路径、完全图、连通图、迪杰斯特拉、b树

目录 顺式存储和链式存储 优缺点比较 顺序存储 ​编辑 链式存储 如何评价哈希函数的好坏 简述哈希查找中链地址法解决冲突的方法 树的遍历 关键路径 完全图 连通图 迪杰斯特拉 b树 特点&#xff1a; 插入&#xff08;索引不能大于&#xff1a;最大为 M-1 个&#…

TrustGeo代码理解(六)utils.py

代码链接:https://github.com/ICDM-UESTC/TrustGeo 一、导入常用库和模块 from __future__ import print_function from distutils.version import LooseVersion from matplotlib.scale import LogisticTransform import numpy as np import torch import warnings import t…

测序名词解释

测序深度&#xff08;Sequencing Depth&#xff09;是指&#xff1a;测序得到的碱基总量&#xff08;bp&#xff09;与基因组&#xff08;转录组或测序目标区域大小&#xff09;的比值&#xff0c;是评价测序量的指标之一。 测序深度的计算公式为&#xff1a; 测序深度 &…

Java数据结构-通过数组封装-结构分析

1、默认arrayList的数组未初始化&#xff0c;长度为0&#xff0c;容量默认是10 ArrayList<Integer> arrayList new ArrayList<>();System.out.println(ClassLayout.parseInstance(arrayList).toPrintable()); java.util.ArrayList object internals: OFF SZ …

【论文极速读】LVM,视觉大模型的GPT时刻?

【论文极速读】LVM&#xff0c;视觉大模型的GPT时刻&#xff1f; FesianXu 20231210 at Baidu Search Team 前言 这一周&#xff0c;LVM在arxiv上刚挂出不久&#xff0c;就被众多自媒体宣传为『视觉大模型的GPT时刻』&#xff0c;笔者抱着强烈的好奇心&#xff0c;在繁忙工作之…

威联通硬盘休眠后修改系统定时任务

按照网上一些教程&#xff0c;成功将威联通的机械硬盘设置了自动休眠。但是发现每天有多个整点硬盘会自动唤醒&#xff0c;怀疑是系统内置的定时任务触发了硬盘唤醒。 通过查看系统日志中事件和访问记录&#xff0c;判断出一些引发硬盘唤醒的自动任务&#xff0c;将这些定时任…

学习使用echarts漏斗图的参数配置和应用场景

学习使用echarts漏斗图的参数配置和应用场景 前言什么是漏斗图漏斗图的特点及应用场景漏斗图的特点漏斗图常见的的应用场景&#xff1a; echarts中漏斗的常用属性echart漏斗代码美化漏斗图样式1、设置标题字体大小2、设置标签样式3、设置漏斗图为渐变颜色4、设置高亮效果5、设置…

自动化测试(终章)webdriver的常用api(2)以及新的开始

目录 多层框架/窗口定位 多层框架的定位 frame是什么&#xff1f; 多层窗口定位 层级定位 使用 XPath 进行层级定位&#xff1a; 使用 CSS 选择器进行层级定位&#xff1a; 下拉框处理 alert、confirm、prompt 的处理 Alert 弹窗&#xff1a; Confirm 弹窗&#xff…

vue3 elementplus左侧无限级菜单

使用的组件是 element Plus Menu 菜单 注意&#xff1a;Menu 菜单属性参数可以自己配置 链接: Menu 菜单 //父级页面 <el-container><el-aside width"320px"><el-menuopen"handleOpen"close"handleClose":default-active"…