基于YOLOv8深度学习的高精度车辆行人检测与计数系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:车辆和行人检测与计数系统对于城市管理、交通规划和公共安全具有极其重要的意义。通过利用基于YOLOv8的检测系统,可以实现对行人流量和车流量的实时监测和精确计数,这一能力在多个场合中发挥着至关重要的作用。本文基于YOLOv8深度学习框架,通过5607张图片,训练了一个进行车辆行人检测与计数的目标检测模型,准确率高达94%。并基于此模型开发了一款带UI界面的车辆和行人检测与计数系统,可用于实时检测场景中的车辆与行人并计数,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

车辆和行人检测与计数系统对于城市管理、交通规划和公共安全具有极其重要的意义。通过利用基于YOLOv8的检测系统,可以实现对行人流量和车流量的实时监测和精确计数,这一能力在多个场合中发挥着至关重要的作用。

首先,该系统能够帮助交通管理部门监测道路使用情况,分析交通拥堵问题,为交通信号控制(如红绿灯调整)、路网设计优化和交通引导提供数据支持。这有助于缓解交通压力,减少交通事故,提升道路使用效率。
其次,在公共安全领域中,行人车辆检测与计数系统可以用于人群密度监测,比如在大型活动或公共集会场合,通过监测人群密度和流动趋势,可以及时预防和应对踩踏等公共安全事件。
而且,零售业和商场也可利用此系统分析顾客流量和停车需求,从而进行店铺布局优化,车位管理以及营业时间的调整,以更好地服务消费者。在智能城市的构建当中,行人车辆检测与计数系统还可以与城市监控网络相结合,进行城市规划、环境质量监测、应急管理等,对城市的可持续发展具有重要影响。
此外,在自动驾驶技术研发中,准确的行人和车辆检测是确保行车安全的关键技术。自动驾驶车辆能够利用此技术来理解周围环境,避免撞车和保护行人安全。因此,行人车辆检测与计数系统的应用前景广阔,是实现智能交通和智慧城市的基础性技术之一。

博主通过搜集车辆与行人的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的高精度车辆行人检测与计数系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行车辆行人目标检测,并且分别计数;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述

在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于车辆行人的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含5607张图片,其中训练集包含4485张图片验证集包含1122张图片,部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入CarPersonData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\CarPersonDetection\datasets\CarPersonData\images\train
val: E:\MyCVProgram\CarPersonDetection\datasets\CarPersonData\images\val


# number of classes
nc: 2

# class names
names: ['person', 'car']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/CarPersonData/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5平均值为0.94,结果还是非常不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/car_data_1_4648.jpg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)


# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述
以上便是关于此款车辆行人检测与计数的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的高精度车辆行人检测与计数系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/249569.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

zync spi flash 频率配置

spi flash的频率配置 代码流程及最终的频率值。 驱动目录 基于4.14.55 内核, \drivers\spi\spi-dw-fmsh.c (控制器) \drivers\spi\spi-dw.c \drivers\mtd\devices\m25p80.c (设备) \drivers\spi\spi.c spi dts配置说明 spi0: spie000100…

3、Kafka 线上集群部署方案怎么做?

文章目录 1、操作系统的选择1.1、I/O 模型的使用1.2、数据网络传输效率1.3、社区支持度 2、磁盘的选择3、磁盘容量的规划3.1、举例思考本问题:3.2、计算一下:3.3、规划磁盘容量时你需要考虑下面这几个元素: 4、带宽规划4.1、计算 总结 1、操作…

提供一个数据库的表,然后,分页显示表中所有信息,一页10个,此表130条信息。最后再以饼图显示男 女 未知 人数的情况。

运行之后显示的效果&#xff1a; 如果是新项目&#xff0c;建立项目后&#xff0c;把mysql驱动放到指定的目录下即&#xff1a; WebContent\WEB-INF-lib 我用的驱动是 mysql-connector-j-8.0.33.jar 展示页 listpage.jsp <%page import"java.util.Map.Entry"%&g…

break用法

break他是用于从循环语句中跳出一层循环体的&#xff0c;提前结束循环 但是值得注意的点事break只能用在循环语句和switch当中 那么我们上代码进行具体的理解&#xff1a; 如果圆的面积大于100就会终止循环&#xff0c;那么如何体现出他只能终结一个循环呢&#xff0c;请看下…

独立站低成本流量:优化用户体验,实现精准营销

在当今的数字化时代&#xff0c;获取流量是每个网站成功的关键。然而&#xff0c;随着竞争的加剧&#xff0c;流量获取的成本也在逐渐上升。对于许多独立站来说&#xff0c;如何低成本的获取流量变得越来越具有挑战性。本文Nox聚星将和大家探讨独立站如何通过网站优化和精准营销…

3. 内容模块管理 - 异常处理与校验

文章目录 内容模块管理一、自定义异常1.1 全局异常处理器1.2 自定义异常1.3 异常统一响应类1.4 封装通用异常信息 二、JSR303校验2.1 Maven坐标2.2 校验规则2.3 代码示例2.4 捕捉校验异常2.5 分组校验2.6 备注 三、全局异常处理23.1 全局异常处理器3.2 结果集3.3 常用注解3.3.1…

拷贝的艺术:深拷贝与浅拷贝的区别与应用(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

虚拟电厂 能源物联新方向

今年有多热&#xff1f;据上海市气象局官微消息&#xff0c;5月29日13时09分&#xff0c;徐家汇站气温达36.1℃&#xff0c;打破了百年来的当地5月份气温*高纪录。不仅如此&#xff0c;北京、四川、江西、湖南、广东、广西等地也频频发布高温预警。 伴随着居民用电急剧攀升&am…

LED 底层原理 和 GPIO引脚、寄存器操作

目录 LED 原理 LED 的驱动方式 普适的 GPIO 引脚操作方法 GPIO 寄存器操作 LED 原理 当我们学习 C 语言的时候&#xff0c;我们会写个 Hello 程序。 那当我们写 ARM 程序&#xff0c;也该有一个简单的程序引领我们入门&#xff0c;这个程序就是点亮 LED。 我们怎样去点亮…

Java 中 IO 流

目录 前言 1. 字节流&#xff08;Byte Streams&#xff09;&#xff1a; 1.1 输入字节流&#xff1a; 1.2 输出字节流&#xff1a; 2. 字符流&#xff08;Character Streams&#xff09;&#xff1a; 2.1 输入字符流&#xff1a; 2.2 输出字符流&#xff1a; 3. 转换流&…

如何一键生成多个文件二维码?批量文件二维码制作技巧

文件能批量生成二维码吗&#xff1f;现在的二维码用途范围越来越广&#xff0c;比如常见的有图文、文件、问卷、音频或者视频等内容生成二维码图片&#xff0c;扫码查看内容。那么当需要将很多的文件每个都单独生成一个二维码时&#xff0c;有没有比较简单快捷的操作方法吗&…

SELinux介绍

本章主要介绍在RHEL8中如何使用 SELinux。 了解什么是 SELinux了解 SELinux 的上下文配置端口上下文了解SELinux的布尔值了解SELinux的模式 在 Windows系统中安装了一些安全软件后&#xff0c;当执行某个命令时&#xff0c;如果安全软件认为这个命令对系统是一种危害&#…

二维差分详解

前言 上一期我们分享了一维差分的使用方法&#xff0c;这一期我们将接着上期的内容带大家了解二位差分的使用方法&#xff0c;话不多说&#xff0c;LET’S GO!&#xff08;上一期链接&#xff09; 二维差分 二维差分我们可以用于对矩阵区间进行多次操作的题。 二维差分我们还…

使用国内镜像源安装opencv

在控制台输入命令&#xff1a; pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple 验证安装&#xff1a; step 1&#xff1a; 打开终端&#xff1b;step 2&#xff1a; 输入python&#xff0c;进入Python编译环境&#xff1b;step 3&#xff1a; 粘贴…

LT8711HE方案《任天堂Switch底座方案》

LT8711HE Type-c转HDMI方案 LT8711HE是高性能的Type-C/DP1.2转HDMI2.0转换器&#xff0c;设计用于连接 USB Type-C 源或 DP1.2 源到 HDMI2.0 接收器。该LT8711HE集成了符合 DP1.2 标准的接收器和符合 HDMI2.0 标准的发射器。此外&#xff0c;两个 CC 控制器是包括用于 CC 通信以…

20.Java程序设计-基于SSM框架的安卓掌上校园生活系统的设计与实现

摘要&#xff1a; 随着移动互联网技术的快速发展&#xff0c;校园生活信息化成为提高学校管理效率、方便学生生活的关键。本研究以基于SSM&#xff08;Spring Spring MVC MyBatis&#xff09;框架的技术体系为基础&#xff0c;致力于设计与实现一款功能强大、高效稳定的安卓…

手动添加Git Bash Here到右键菜单(超详细)

通过WindowsR快捷键可以打开“运行窗口”&#xff0c;在“窗口”中输入“regedit”&#xff0c;点击“确定”打开注册表。 依次进入HKEY_CLASSES_ROOT —-》 Directory —-》Background —-》 shell 路径为Computer\HKEY_CLASSES_ROOT\Directory\Background\shell 3.在“s…

来聊聊Spring的循环依赖

文章目录 首先了解一下什么是循环依赖简述解决循环依赖全过程通过debug了解Spring解决循环依赖全过程Aservice的创建递归来到Bservice的创建然后BService递归回到了getAservice的doGetBean中故事再次回到Aservice填充BService的步骤 总结成流程图为什么二级就能解决循环依赖问题…

2023年底总结丨5大好用的局域网监控软件

不知不觉间2023年又到结尾了&#xff0c;今年我们服务过很多想要电脑监控软件的客服&#xff0c;也服务了很多想要加密软件的客户。 这一年&#xff0c;我们走得不疾不徐&#xff0c;走得稳而坚定&#xff1b;这一年&#xff0c;我们累积服务超过万计客户&#xff1b;这一年&a…

面试官:这些大学生都会

大家好&#xff0c;我是 JavaPub。 最近有些同学在后台问我&#xff0c;面试总是会遇到被问 Linux 命令的问题&#xff0c;自己就面试个后端开发岗位&#xff0c;怎么这么难呢&#xff1f; 其实 Linux 命令&#xff0c;对于一个后端开发来说&#xff0c;并不是很难&#xff0c…