现代雷达车载应用——第2章 汽车雷达系统原理 2.6节 雷达设计考虑

        经典著作,值得一读,英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。

2.6 雷达设计考虑

        上述部分给出了汽车雷达基本原理的简要概述。在雷达系统的设计中,有几个方面是必不可少的,它们决定了雷达系统的关键性能。在本节中,FMCW雷达将作为一个例子来讨论这些设计考虑。

2.6.1 灵敏度

        雷达的灵敏度定义了在特定PFA和PD下可以成功探测到的来自目标的最弱回波。在以上章节中,我们分别介绍了信号模型和噪声模型。有了这些模型,雷达系统设计者将能够在发展的早期阶段预测雷达的灵敏度。

        灵敏度的分析从雷达距离方程(2.21)开始。假设接收信道的总增益为Gs,其中包括放大器的增益、下变频混频器和基带放大器的损耗/增益。基带上的信号功率为

          (2.101)

        另一方面,由式(2.34)可知基带上的噪声功率为

          (2.102)

        因此,信噪比可以由下式获得

          (2.103)

        式中,Gsp为信号处理增益,Lsp为信号处理损耗。βn近似于ADC前抗混叠滤波器的BW。对于FMCW雷达来说,Gsp主要来自于“快时间”和“慢时间”的DFT。对距离-多普勒处理,信号处理总增益Gsp = N*M,其中N为“快时间”的DFT大小,M为“慢时间”的DFT大小,也分别称为距离和多普勒单元数。对于Lsp,其中一个原因是在DFT之前对数据加了窗函数。

        对于汽车雷达的设计,通常针对具体情况提供要求。例如,某汽车制造商需要前视雷达来支持其自动紧急制动功能,这就要求雷达在一定范围内检测到行人,且检测概率大于50% (PD > 0.5),虚警率PFA = 1 * 10 -4。行人通常被认为是一个Swerling I的目标。从表2.6中可以看出,在没有积累的情况下,实现PD = 0.5和PFA = 1 * 10 -4的Swerling I目标的最小信噪比是SNRmin = 10.89 dB。因此,最大探测距离为

          (2.104)

        雷达设计人员的主要任务之一是在(2.105)中的参数之间找到一个良好的平衡。kT0是常数,λ是由工作频率决定的,它也可以看作是一个常数。发射功率P t和噪声系数NF通常由雷达收发芯片决定,通常受到制造工艺的限制。Gt和Gr依赖于天线设计,还需要考虑最大天线增益和波束覆盖(天线波束宽度)之间的权衡。βn、Gsp和Lsp是与雷达波形设计和数字信号处理相关的参数。利用积累可以降低最小信噪比,从而提高最大探测距离。然而,集成也需要更多的处理。

2.6.2 距离/多普勒覆盖

        雷达的距离覆盖可以从(2.46)到(2.105)确定。由式(2.46)可知,当fp = fs,采用I/Q基带时,最大距离为:

          (2.105)

        这个最大范围是基于波形和采样率,而不考虑灵敏度。使用单通道基带(没有I/Q基带),最大范围减少了一半:

          (2.106)

         因此,雷达的实际距离覆盖应该为

           (2.107)

         或

           (2.108)

         对于单通道基带。

         对于多普勒覆盖,最大速度可以从式(2.79)计算当,ξp=M

           (2.109)

         Vmax也被称为最大无模糊速度,因为Vmax之外的速度被折叠到(速度)区间中。

2.6.3 距离/多普勒分辨率

        雷达的目标分辨率是它区分距离或多普勒非常近的目标的能力。对于FMCW雷达,目标的距离可以从(2.69)得到。距离分辨率ΔR是两个相邻距离单元之间的差:

          (2.110)

          (2.111)

        由于N/fs=T0,距离分辨率可以推导为

          (2.112)

        类似距离分辨率,多普勒(速度)分辨率ΔV能从(2.79)获得:

          (2.113)

          (2.114)

        值得注意的是,由式(2.112)和式(2.114)推导出的ΔR和ΔV是一种理想条件,包括相同大小、高信噪比、矩形窗口的点目标。在实际情况下,距离和多普勒分辨率会受到各种因素的影响。例如,如果目标的大小不同,则更难以区分较小的目标和较大的目标。另一个例子是,在距离-多普勒处理中可以使用某些窗函数来获得合理的副瓣电平,这通常会增加主瓣宽度,降低距离和多普勒分辨率[30]。

2.6.4 相位噪声

         一个完美的正弦波只能在教科书中找到。相位和频率的不稳定性在所有天然和人造振荡器中都是允许的。这些不稳定性被称为相位噪声。相位噪声与材料、结构设计以及振荡器中的随机噪声现象有关。图2.28(a)显示了一个普通振荡器的频谱,其中f0为中心或载波频率。相位噪声的功率随着频偏fa的增大而减小。频谱的相位噪声部分可以分为两部分,即近载波相位噪声和远载波相位噪声。对于汽车雷达,通常使用锁相环来合成波形。图2.28(b)显示了锁相环的典型频谱。在图2.28(b)中可以看到一个基座,这是由于基于锁相环的合成器具有有限环路BW,或者由于系统中使用的倍频器链的有限BW用于倍频。参考文献[31-33]详细分析了噪声基座在倍频作用下的行为。

图2.28 雷达信号源频谱(a)一般振荡器的频谱(b)包括噪声基座的合成信号发生器的频谱

        在雷达的接收信道中,混频器可以增加或消除接收信号中的相位噪声。相位噪声的消除发生在两个输入信号是相干的情况下,即两个输入信号之间具有确定的相位关系。在其他工作中,混频器的输入信号来自同一参考源。在汽车雷达系统中,混频器将发射信号与延时副本混合,产生如下相位噪声去相关[34,35]:

          (2.115)

        相位噪声去相关系数为,如(2.115)所示。可以看出,当δt = 0时,相位噪声可以完全消除。随着δt的增大,呈现周期性。

        为了更好地说明相位噪声对汽车雷达的影响,采用雷达收发器的相位噪声实测数据进行仿真。图2.29是测量到的相位噪声。从图中可以清楚地看到相位噪声基座。仿真的距离分布图如图2.30和2.31所示,目标位置分别为80 m和150 m。距离分布是128个chirp的平均值,以获得噪声底的形状。如(2.115)所示,相位噪声在距离分布中引入肩带。肩带随着目标距离的增加而升高,而去相关度随着δt的增加而增加。在汽车雷达应用中,更高的肩带意味着更小的动态范围。在这种情况下,可能无法检测到大目标旁边的小目标。例如,汽车前面的行人可能会被相位噪声肩带掩盖。因此,雷达信号发生器必须具有低相位噪声才能保持足够的动态范围

图2.29 雷达发射机测量到的相位噪声示例

图2.30 80m处目标的距离分布

图2.30 150m处目标的距离分布

2.6.5 Chirp非线性

        汽车雷达测距的另一个主要干扰是chirp非线性。理想的FMCW雷达具有完美的线性chirp,可以表示为

         f(t) = fc + Kt  (2.116)

         K是chirp的斜率。然而,实际信号合成器中总是存在频率偏差。图2.32显示了一个与理想线性chirp相比有轻微偏差的24 GHz chirp示例。

图2.32 一个非线性chirp

        基带频率和目标距离精度取决于频率斜坡中非线性的类型。因此,chirp非线性带来的影响应该逐个评估。例如,文献[36]中描述了具有正弦偏差的非线性频率斜坡的影响。在文献[37]中,评估了FMCW雷达中自由运行的压控振荡器的平方偏差。由于难以解析地确定chirp非线性的影响,雷达设计人员通常将测量和仿真相结合来分析chirp非线性的影响。现代先进的信号和频谱分析仪器,如Keysight 89,601BHPC和罗德与施瓦茨FSW信号和频谱分析仪,提供了直接测量瞬时波形频率关系的能力。因此,雷达设计人员可以利用雷达仿真中测量到的波形来评估非线性所造成的影响。

        对于图2.32中测量的波形,可以使用一般的连续波发射信号(2.13)从频率与时间的瞬态波形创建时域发射信号。根据感兴趣的距离,可以在(2.42)中应用一定的时间延迟来获得基带信号进行评估。仿真距离分布示例如图2.33所示,其中三个目标分别位于30、95和200 m处,RCS值不同。非线性的影响在图2.33中很明显,随着距离的增加,目标波束的宽度会变宽,这会降低距离识别和距离精度。信噪比在较长的距离也有更多的下降。因此,在汽车雷达设计中,有一个良好的线性chirp是至关重要的,以保持雷达的性能在整个距离覆盖。

图2.33 非线性chirp目标的距离分布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/249466.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

真正可行的vue3迁移到nuxt3方法(本人亲测,完全避坑)

终于到了总结经验的时候了,这绝对是全网唯一、完全真正可行的干货。 在我看来,知识就是要拿来分享的,分享给他人也是在提高自己。我绝对不会搞什么订阅或者vip专栏来搞钱坑害各位, 因为我在csdn写文章最主要的目的是为了记录和总…

接口测试 — 4.Requests库GET、Post请求

Requests库GET请求是使用HTTP协议中的GET请求方式对目标网站发起请求。 (不带参数的GET请求请看上一篇文章的练习) 1、Requests库待参数的GET请求 使用Get方法带参数请求时,是params参数字典,而不是data参数字典。data参数字典…

从零开始:前端架构师的基础建设和架构设计之路

文章目录 一、引言二、前端架构师的职责三、基础建设四、架构设计思想五、总结《前端架构师:基础建设与架构设计思想》编辑推荐内容简介作者简介目录获取方式 一、引言 在现代软件开发中,前端开发已经成为了一个不可或缺的部分。随着互联网的普及和移动…

Redis 过期删除策略、内存回收策略、单线程理解

不知从何开始Redis的内存淘汰策略也开始被人问及,卷!真的是太卷了。难不成要我们去阅读Redis源码吗,其实问题的答案,在Redis中的配置文件中全有,不需要你阅读源码、这个东西就是个老八股,估计问这个东西是想…

深度探索Linux操作系统 —— 构建根文件系统

系列文章目录 深度探索Linux操作系统 —— 编译过程分析 深度探索Linux操作系统 —— 构建工具链 深度探索Linux操作系统 —— 构建内核 深度探索Linux操作系统 —— 构建initramfs 深度探索Linux操作系统 —— 从内核空间到用户空间 深度探索Linux操作系统 —— 构建根文件系统…

金融众筹系统源码:适合创业孵化机构 附带完整的搭建教程

互联网技术的发展,金融众筹作为一种新型的融资方式,逐渐成为创业孵化机构的重要手段。为了满足这一需求,金融众筹系统源码就由此而生,并附带了完整的搭建教程。 以下是部分代码示例: 系统特色功能一览: 1.…

发现隐藏的 Web 应用程序漏洞

随着 Web 2.0 的扩展,近年来社交媒体平台、电子商务网站和电子邮件客户端充斥着互联网空间,Web 应用程序已变得无处不在。 国际知名网络安全专家、东方联盟创始人郭盛华透露:‘应用程序消耗和存储更加敏感和全面的数据,它们成为对…

时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解

时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解 目录 时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICE…

Chrome安装插件出现CRX-HEADER-INVALID解决方法

1 Chrome浏览器安装离线插件时出现了“CRX-HEADER-INVALID”错误。 2将插件包的后缀名改成.zip格式。 3点击右侧三点按钮后点击【更多工具】--》【扩展程序】界面。 4在【扩展程序】将ZIP包拉入并安装。 5这样就安装成功了,虽然图标上有红色图标…

Dockerfile创建镜像 INMP+wordpress

Nginx 172.111.0.10 MySQL 172.111.0.20 PHP 172.111.0.30 Nginx Vim Dockerfile MySQL Vim my.cnf PHP

【强化学习-读书笔记】表格型有模型和无模型的结合、Dyna-Q、Dyna-Q+、表格型方法的总结

参考 Reinforcement Learning, Second Edition An Introduction By Richard S. Sutton and Andrew G. Barto前面的方法要么是单纯的 model-based ** 方法,要么是 model-free。基于模型的方法将规划作为其主要组成部分,而无模型的方法则主要依赖于学习…

vue javascript tree 层级数据处理

层级数据是有父子关系的数组,示例: const treeData [{id: 1b7e8e98cb1d4a1f81e4fe2dfd9a8458,name: 层级1,parentId: null,children: [{id: 0d45dd5bb4c14d64a3ab0b738add4b24,name: 层级1-1,parentId: 1b7e8e98cb1d4a1f81e4fe2dfd9a8458,children: [{…

Arduino下载、安装及配置(含中文配置步骤)

Arduino下载 官网下载 官网链接---------> Arduino - Home 网盘下载 链接:https://pan.baidu.com/s/1In38y8pinjCL0DEGjRHVTQ?pwdJAYU 提取码:JAYU Arduino安装 直接下一步下一步就行(如果不想放在C盘,那就改…

师兄啊师兄第二季开播:男主成海神?玄机是懂联动的!

《师兄啊师兄》动画第二季在12月14日终于正式开播,首播两集,还是很有诚意的。 这部动画改编自言归正传的小说《我师兄实在太稳健了》,原著的知名度不算很高,但玄机制作的动画让这个IP火出了圈。 动画第一季就凭借高颜值的人物建模…

qemu 虚拟机

文章目录 一、参考资料二、QEMU调试参数三、QEMU 命令 一、参考资料 # 查询 qemu 包 apt list | grep qemu# 查询已安装的 qemu 包 apt list --installed | grep qemu # 查询 qemu 版本 qemu-img -V # 安装 sudo apt-get install qemu-system-arm qemu-system-mips qemu-syste…

简洁高效的 NLP 入门指南: 200 行实现 Bert 文本分类 (TensorFlow 版)

简洁高效的 NLP 入门指南: 200 行实现 Bert 文本分类 TensorFlow 版 概述NLP 的不同任务Bert 概述MLM 任务 (Masked Language Modeling)TokenizeMLM 的工作原理为什么使用 MLM NSP 任务 (Next Sentence Prediction)NSP 任务的工作原理NSP 任务栗子NSP 任务的调整和局限性 安装和…

YOLOv8重要文件解读

🍨 本文为[🔗365天深度学习训练营学习记录博客 🍦 参考文章:365天深度学习训练营 🍖 原作者:[K同学啊 | 接辅导、项目定制] 🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/m…

js输入框部分内容不可编辑,其余正常输入,el-input和el-select输入框和多个下拉框联动后的内容不可修改

<tr>//格式// required自定义指令<e-td :required"!read" label><span>地区&#xff1a;</span></e-td><td>//v-if"!read && this.data.nationCode 148"显示逻辑<divclass"table-cell-flex"sty…

【CASS精品教程】cass11提示“请不要在虚拟机中运行此程序”的解决办法

文章目录 一、问题提示二、解决办法一、问题提示 按照正常安装教程安装好南方测绘cass 11之后,打开的时候可能会有以下提示:请不要在虚拟机中运行此程序,如下图所示: 遇到问题,咱们就想办法解决问题,下面将自己尝试的方法及最终解决情况跟大家说一下,供参考。 二、解决…

基于ssm图书商城网站的设计和开发论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本图书商城网站就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数据信息&am…