【C语言(十五)】

动态内存管理

一、为什么要有动态内存分配? 

我们已经掌握的内存开辟方式有:

int val = 20 ; // 在栈空间上开辟四个字节
char arr[ 10 ] = { 0 }; // 在栈空间上开辟 10 个字节的连续空间

但是上述的开辟空间的方式有两个特点: 

空间开辟大小是固定的。
数组在申明的时候,必须指定数组的长度,数组空间⼀旦确定了大小不能调整
但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知
道,那数组的编译时开辟空间的方式就不能满足了。
C语⾔引入了动态内存开辟,让程序员自己可以申请和释放空间,就比较灵活了。

二、malloc和free

2.1、malloc 

 C语言提供了⼀个动态内存开辟的函数:

这个函数向内存申请⼀块连续可用的空间,并返回指向这块空间的指针。

如果开辟成功,则返回⼀个指向开辟好空间的指针。
如果开辟失败,则返回⼀个 NULL 指针,因此malloc的返回值⼀定要做检查。
返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器

2.2、free 

C语言提供了另外⼀个函数free,专门是用来做动态内存的释放和回收的,函数原型如下: 

void free (void* ptr); 

free函数用来释放动态开辟的内存。 

如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
如果参数 ptr 是NULL指针,则函数什么事都不做。
malloc和free都声明在 stdlib.h 头文件中。

举个例子:

#include <stdio.h>
#include <stdlib.h>

int main()
{
	int num = 0;
	scanf("%d", &num);
	int arr[num] = { 0 };
	int* ptr = NULL;
	ptr = (int*)malloc(num * sizeof(int));
	if (NULL != ptr)//判断ptr指针是否为空
	{
		int i = 0;
		for (i = 0; i < num; i++)
		{
			*(ptr + i) = 0;
		}
	}
	free(ptr);//释放ptr所指向的动态内存
	ptr = NULL;//是否有必要?
	return 0;
}

三、calloc和realloc 

3.1、calloc 

C语言还提供了⼀个函数叫 calloc calloc 函数也用来动态内存分配。原型如下: 

void* calloc (size_t num, size_t size); 

函数的功能是为 num 个大小为 size 的元素开辟⼀块空间,并且把空间的每个字节初始化为0。
与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。

举个例子:

#include <stdio.h>
#include <stdlib.h>

int main()
{
	int* p = (int*)calloc(10, sizeof(int));
	if (NULL != p)
	{
		int i = 0;
		for (i = 0; i < 10; i++)
		{
			printf("%d ", *(p + i));
		}
	}
	free(p);
	p = NULL;
	return 0;
}

输出结果:

所以如果我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。 

3.2、realloc

realloc函数的出现让动态内存管理更加灵活。
有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的使用内存,我们⼀定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小 的调整。

函数原型如下:

void * realloc ( void * ptr, size_t size);
ptr 是要调整的内存地址
size 调整之后新大小
返回值为调整之后的内存起始位置。
这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到 的空间。
realloc在调整内存空间的是存在两种情况:
        ◦ 情况1:原有空间之后有足够大的空间
        ◦ 情况2:原有空间之后没有足够大的空间

情况1

当是情况1的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。

在已经开辟好的空间后边,没有足够的空间,直接进行空间的扩大,在这种情况下,realloc函数会在内存的堆区重新找一个空间(满足新的空间的大小需求的),同时会把旧的数据拷贝到新的新空间,然后释放旧的空间,同时返回新的空间的起始地址。

情况2

当是情况2的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找⼀个合适大小的连续空间来使用。这样函数返回的是⼀个新的内存地址。

在已经开辟好的空间后边,有足够的空间,直接进行扩大,扩大空间后,直接返回旧的空间的起始地址!

由于上述的两种情况,realloc函数的使用就要注意⼀些。

#include <stdio.h>
#include <stdlib.h>

int main()
{
	int* ptr = (int*)malloc(100);
	if (ptr != NULL)
	{
		//业务处理
	}
	else
	{
		return 1;
	}
	//扩展容量

	//代码1 - 直接将realloc的返回值放到ptr中
	ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)
	//int* p = (int*)realloc(NULL,40);//等价于malloc

	//代码2 - 先将realloc函数的返回值放在p中,不为NULL,在放ptr中
	int* p = NULL;
	p = realloc(ptr, 1000);
	if (p != NULL)
	{
		ptr = p;
	}
	//业务处理
	free(ptr);
	return 0;
}

malloc/calloc/realloc 申请的空间

如果不主动释放,出了作用域是不会销毁的

释放的方式:
1. free主动释放
2.直到程序结束,才由操作系统回收

四、常见的动态内存错误

4.1、对NULL指针的解引用操作

void test()
{
    int *p = (int *)malloc(INT_MAX/4);
    *p = 20;//如果p的值是NULL,就会有问题
    free(p);
}

4.2、对动态开辟空间的越界访问

void test()
{
	int i = 0;
	int* p = (int*)malloc(10 * sizeof(int));
	if (NULL == p)
	{
		exit(EXIT_FAILURE);
	}
	for (i = 0; i <= 10; i++)
	{
		*(p + i) = i;//当i是10的时候越界访问
	}
	free(p);
}

 4.3、对非动态开辟内存使用free释放

void test()
{
	int a = 10;
	int* p = &a;
	free(p);//ok?
}

4.4、使用free释放一块动态开辟内存的一部分

void test()
{
	int* p = (int*)malloc(100);
	p++;
	free(p);//p不再指向动态内存的起始位置
}

4.5、对同一块动态内存多次释放

void test()
{
	int* p = (int*)malloc(100);
	free(p);
	free(p);//重复释放
}

 4.6、动态开辟内存忘记释放(内存泄漏)

void test()
{
	int* p = (int*)malloc(100);
	if (NULL != p)
	{
		*p = 20;
	}
}

int main()
{
	test();
	while (1);
}

忘记释放不再使用的动态开辟的空间会造成内存泄漏。

切记:动态开辟的空间一定要释放,并且正确释放。

五、动态内存经典笔试题分析 

5.1、题目1: 

void GetMemory(char* p)
{
	p = (char*)malloc(100);
}

void Test(void)
{
	char* str = NULL;
	GetMemory(str);
	strcpy(str, "hello world");
	printf(str);
}

请问运行Test函数会有什么样的结果?

1.GetMemory函数采用值传递的方式,无法将malloc开辟空间的地址,返回放在str中,调用结束后str依然是NULL指针。

2. strcpy中使用了str,就是对NULL指针解引用操作,程序崩溃。

3.内存泄露。

5.2、题目2: 

char* GetMemory(void)
{
	char p[] = "hello world";
	return p;
}

void Test(void)
{
	char* str = NULL;
	str = GetMemory();
	printf(str);
}

5.3、题目3: 

void GetMemory(char** p, int num)
{
	*p = (char*)malloc(num);
}

void Test(void)
{
	char* str = NULL;
	GetMemory(&str, 100);
	strcpy(str, "hello");
	printf(str);
}

这个题目大体上是没问题的,唯独缺少了最后的释放空间和指针置空。 

5.4、题目4:

void Test(void)
{
	char* str = (char*)malloc(100);
	strcpy(str, "hello");
	free(str);
	//str就是野指针
	if (str != NULL)
	{
		strcpy(str, "world");//非法访问
		printf(str);
	}
}

以上的代码只有在使用完指针后将指针所指的空间释放,而并没有将指针置空。 

六、柔性数组 

也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。
C99中,结构中的最后⼀个元素允许是未知大小的数组,这就叫做『柔性数组』成员。

例如:

struct st_type
{
	int i;
	int a[0];//柔性数组成员
}type_a;

有些编译器会报错无法编译可以改成:

struct st_type
{
	int i;
	int a[];//柔性数组成员
}type_a;

 6.1、柔性数组的特点:

结构中的柔性数组成员前面必须至少⼀个其他成员。
sizeof 返回的这种结构大小不包括柔性数组的内存。
包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。

例如:

typedef struct st_type
{
	int i;
	int a[0];//柔性数组成员
}type_a;

int main()
{
	printf("%d\n", sizeof(type_a));//输出的是4
	return 0;
}

6.2、柔性数组的使用 

//代码1
#include <stdio.h>
#include <stdlib.h>

int main()
{
	int i = 0;
	type_a* p = (type_a*)malloc(sizeof(type_a) + 100 * sizeof(int));
	//业务处理
	p->i = 100;
	for (i = 0; i < 100; i++)
	{
		p->a[i] = i;
	}
	free(p);
	return 0;
}

 这样柔性数组成员a,相当于获得了100个整型元素的连续空间。

6.3、柔性数组的优势 

上述的 type_a 结构也可以设计为下面的结构,也能完成同样的效果。 

//代码2
#include <stdio.h>
#include <stdlib.h>

typedef struct st_type
{
	int i;
	int* p_a;
}type_a;

int main()
{
	type_a* p = (type_a*)malloc(sizeof(type_a));
	p->i = 100;
	p->p_a = (int*)malloc(p->i * sizeof(int));

	//业务处理
	for (int i = 0; i < 100; i++)
	{
		p->p_a[i] = i;
	}

	//释放空间
	free(p->p_a);
	p->p_a = NULL;
	free(p);
	p = NULL;
	return 0;
}

上述 代码1 和 代码2 可以完成同样的功能,但是 方法1 的实现有两个好处:

第一个好处是:方便内存释放
如果我们的代码是在⼀个给别⼈用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存⼀次性分配好了,并返回给用户⼀个结构体指针,用户做⼀次free就可以把所有的内存也给释放掉。

第二个好处是:这样有利于访问速度
连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)

拓展阅读:C语言结构体里的数组和指针

七、总结C/C++中程序内存区域划分 

 C/C++程序内存分配的几个区域:

1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。
2. 堆区(heap):⼀般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。分配方式类似于链表。
3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。
4. 代码段:存放函数体(类成员函数和全局函数)的⼆进制代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/249247.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

leetcode LCR 173. 点名

代码&#xff1a; class Solution {public int takeAttendance(int[] records) {int left0,rightrecords.length-1;while (left<right){int midleft(right-left)/2;if(midrecords[mid]){leftmid1;}else {rightmid;}}if(leftrecords[left]){return left1;}else {return left…

北斗三号短报文+4G的低功耗太阳能船载报位监控方案

国内海洋船舶群体长期在海上航行&#xff0c;多数海员由于海面无信号覆盖、个人卫星通信费用昂贵、无法自由使用船载公用卫星通信设备等原因&#xff0c;无法与家人和朋友保持联系&#xff0c;甚至在遇到危险的时候也无法及时向外界发出求救信号&#xff0c;管理单位难以掌握船…

新钛云服助力爱达邮轮·魔都号首航,保驾护航,共创辉煌

随着2024年1月1日的临近&#xff0c;中国首艘国产大型邮轮——爱达邮轮魔都号即将迎来激动人心的首航时刻。作为爱达邮轮的IT系统运维和安全服务伙伴&#xff0c;新钛云服有幸提前登船体验&#xff0c;并为魔都号即将到来的航行提供全面的技术支持与保障。 爱达魔都号&#xff…

微积分-三角函数2

三角函数 在上一节中&#xff0c;讨论了如何在直角三角形中定义三角函数&#xff0c;限制让我们扩展三角函数的定义域。 事实上我们可以取任意角的正弦和余弦&#xff0c;而不只是局限于 0 0 0~ π 2 \frac{\pi}{2} 2π​当中。 当然需要注意的是&#xff0c;正切函数对不是对…

Git使用rebase和merge区别

Git使用rebase和merge区别 模拟环境使用merge合并使用rebase 模拟环境 本地dev分支中DevTest增加addRole() 远程dev被同事提交增加了createResource() 使用merge合并 使用idea中merge解决冲突后, 推送远程dev后,日志图显示 使用rebase idea中使用功能rebase 解决冲突…

论文解读 | NeurIPS2023:「解释一切」图像概念解释器

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; 讲者简介 孙奥&#xff1a; 香港科技大学软件安全实验室在读博士&#xff0c;研究兴趣为可解释性人工智能和可信机器学习&#xff0c;主要是从Post-hoc&#xff0c;逻辑和概念的角度分析神经网络的机理 Title 「…

IntelliJ IDEA 自带的 HTTP Client接口调用插件,替代 Postman

文章目录 引言建议目录结构新建请求不同环境的变量配置添加环境http-client.env.jsonhttp-client.private.env.json引用变量 请求示例Get请求示例Post请求示例鉴权示例断言示例Websocket请求示例 内置对象和动态变量内置对象&#xff1a;内置变量&#xff1a; 引言 在日常的 W…

Eslint 要被 Oxlint替换了吗

什么是 Oxlint 由于最近的rust在前端领域的崛起,基于rust的前端生态链遭到rust底层重构,最近又爆出OxLint,是一款基于Rust的linter工具。Oxlint在国外前端圈引起热烈讨论,很多大佬给出了高度评价。 事实上,Oxlint 是 Oxc 项目旗下的一款产品,专为 JavaScript 和 TypeSc…

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类

目录 前言 1 经验模态分解EMD的Python示例 2 轴承故障数据的预处理 2.1 导入数据 2.2 制作数据集和对应标签 2.3 故障数据的EMD分解可视化 2.4 故障数据的EMD分解预处理 3 基于EMD-CNN-LSTM的轴承故障诊断分类 3.1 训练数据、测试数据分组&#xff0c;数据分batch 3.…

TG-5510cb: txo高稳定性+105℃高温

TG-5510CB是一款高稳定性TCXO&#xff0c;可提供CMOS或限幅正弦输出&#xff0c;5G基站和边缘计算的额定温度为85C&#xff0c;需要室外安装、小型化和无风扇运行。与其他TCXO相比&#xff0c;实验室提供了许多改进&#xff0c;如低温度斜率和相位噪声。符合GR-1244-CORE地层3和…

ssm+vue的高校智能培训管理系统分析与设计(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的高校智能培训管理系统分析与设计&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09…

git 常见错误总结(会不断更新中。。)

常见错误 1. 配置部署key后git clone还是拉不下代码 执行以下命令 先添加 SSH 密钥到 SSH 代理&#xff1a; 如果你使用 SSH 代理&#xff08;例如 ssh-agent&#xff09;&#xff0c;将生成的私钥添加到代理中。 ssh-add ~/.ssh/gstplatrontend/id_rsa如果报错以下错误信息…

centos7下用yum安装包出现问题

原因&#xff1a; 这是因为yum采用Python作为命令解释器&#xff0c;这可以从/usr/bin/yum文件中第一行#!/usr/bin/python发现。而python版本之间兼容性不太好&#xff0c;使得2.X版本与3.0版本之间存在语法不一致问题。而CentOS 7自带的yum采用的是python2.7&#xff0c;当系…

3. cgal 示例 GIS (Geographic Information System)

GIS (Geographic Information System) 地理信息系统 原文地址: https://doc.cgal.org/latest/Manual/tuto_gis.html GIS 应用中使用的许多传感器&#xff08;例如激光雷达&#xff09;都会生成密集的点云。此类应用程序通常利用更先进的数据结构&#xff1a;例如&#xff0c;不…

车载以太网笔记

文章目录 以太网协议分层协议中间设备子网掩码物理层测试内容比较杂,后续会整理。 以太网协议分层 协议 中间设备

Github 2023-12-16开源项目日报Top10

根据Github Trendings的统计&#xff0c;今日(2023-12-16统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目2非开发语言项目2TypeScript项目1Jupyter Notebook项目1Go项目1PHP项目1JavaScript项目1C#项目1 精…

初识Dubbo学习,一文掌握Dubbo基础知识文集(1)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

verilog进阶语法-触发器原语

概述: xilinx设计的触发器提供了多种配置方式&#xff0c;方便设计最简触发器&#xff0c;同步复位触发器&#xff0c;异步复位触发器&#xff0c;同步时钟使能触发器&#xff0c;异步时钟使能触发器。输出又分为同步复位和置位&#xff0c;异步清零和预置位。 官方提供的原语…

抖音视频解析,无水印解析下载抖音视频

抖音视频解析&#xff0c;你是否经常遇到这样的情况&#xff0c;看到一些非常精彩的抖音视频&#xff0c;想要保存下来&#xff0c;但因为下载速度慢或者视频带有水印而感到困扰&#xff1f;那么&#xff0c;这款&#xff08;抖音无水印解析工具&#xff09;将是你的得力助手&a…

离散域下内置式永磁同步电机复矢量电流调节器设计

导读:本期文章主要介绍离散域下内置式永磁同步电机复矢量电流调节器的设计。通过与传统的线性PI调节器仿真验证分析,离散域下设计的电流调节器削弱了d、q之间耦合的影响,大大提高了系统的控制性能。 如需要文中的仿真模型,关注微信公众号:浅谈电机控制,留言获取。 一、…