智能优化算法应用:基于和声算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于和声算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于和声算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.和声算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用和声算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.和声算法

和声算法原理请参考:https://blog.csdn.net/u011835903/article/details/118724731
和声算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


和声算法参数如下:

%% 设定和声优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明和声算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/249084.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RS®SMM100A 矢量信号发生器具备毫米波测试功能的中档矢量信号发生器

R&SSMM100A 矢量信号发生器 具备毫米波测试功能的中档矢量信号发生器 R&SSMM100A 矢量信号发生器在 100 kHz 至 44 GHz 的频率范围内提供优越的射频特性。这款仪器覆盖现有无线标准所使用的 6 GHz 以下的频段、新定义的最高 7.125 GHz 的 5G NR FR1 和 Wi-Fi 6E 频段以…

【Docker六】Docker-consul

目录 一、docker-consul概述 1、服务注册和发现: 1.1、服务注册和发现概念 1.2、服务注册和发现工作机制: 1.3、服务注册与发现的优点: 2、docker-consul概念 2.1、consul的主要特点: 二、consul架构部署: 1、…

实战 | OpenCV传统方法实现密集圆形分割与计数(详细步骤 + y源码)

导 读 本文主要介绍基于OpenCV传统方法实现密集圆形分割与计数应用,并给详细步骤和代码。 背景介绍 实例图片来源于网络,目标是分割下图中圆形目标并计数。 本文实现效果如下: 实现步骤 【1】灰度转换 + 均值滤波 + 二值化,得到参考背景 img = cv2.imread(src.jpg)c…

S1试讲讲稿

习题题目 答案 用到的概念: 概率之和等于1 E ( x ) ∑ i 1 4 x i P i E(x)\sum_{i1}^4x_iP_i E(x)∑i14​xi​Pi​ E ( x 2 ) ∑ i 1 4 x i 2 P i E(x^2)\sum_{i1}^4x_i^2P_i E(x2)∑i14​xi2​Pi​ V a r ( X ) Var(X) Var(X) ∑ i 1 4 ( x i − x ‾ ) 2…

微服务保护--线程隔离(舱壁模式)

一、线程隔离的实现方式 线程隔离有两种方式实现: 线程池隔离 信号量隔离(Sentinel默认采用) 如图: 线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果 信号量隔离&#xff1a…

eclipse连接mysql数据库(下载eclipse,下载安装mysql,下载mysql驱动)

前言: 使用版本:eclipse2017,mysql5.7.0,MySQL的jar建议使用最新的,可以避免警告! 1:下载安装:eclipse,mysql在我之前博客中有 http://t.csdnimg.cn/UW5fshttp://t.csdn…

Linux-CentOS7(无图形界面版)部署stable-diffusion-webui 全过程

Linux-CentOS7(无图形界面版)部署Stable Diffusion webui 全过程 前置要求 git的版本不能是CentOS默认的版本(1.8),版本太老,在后面安装过程会失败。去github上下载最新的git源码包 安装成功显示版本号 …

《Linux C编程实战》笔记:目录操作

目录的创建和删除 mkdir函数 #include <sys/stat.h> #include <sys/types.h> int mkdir(const char *pathname, mode_t mode); mkdir创建一个新的空目录。空目录中会自动创建.和..目录项。所创建的目录的存取许可权由mode (mode &~umask)指定。 新创建目录的…

Linux---cp和mv命令选项

1. cp命令选项 命令选项说明-i交互式提示-r递归拷贝目录及其内容-v显示拷贝后的路径描述-a保留文件的原有权限 cp -i命令选项效果图: cp -r命令选项效果图: cp -v命令选项效果图: cp -a命令选项效果图: -a选项说明: -a 选项还支持拷贝文件夹并且文件夹中的文件权限不丢失 …

如何发布自定义 npm 组件包

准备工作 1. 注册 npm 账号 还没有 npm 账号&#xff1f;去官网注册&#xff1a; https://www.npmjs.com 需要记住用户名、密码、邮箱&#xff0c;后面需要用到。 2. 查看本地 npm 镜像&#xff0c;如果不是默认的&#xff0c;需要改回来 npm config get registry重置镜像路…

C语言--求数组的最大值和最小值【两种方法】

&#x1f357;方法一&#xff1a;用for循环遍历数组&#xff0c;找出最大值与最小值 &#x1f357;方法二&#xff1a;用qsort排序&#xff0c;让数组成为升序的有序数组&#xff0c;第一个值就是最小值&#xff0c;最后一个是最大值 完整代码&#xff1a; 方法一&#xff1a; …

国外博士论文下载网址

系列文章目录 前言 如果你想补充其他相关网址&#xff0c;请留言 一、pqdtcn 1.1 使用说明 浏览本数据库建议使用chrome浏览器&#xff01; ProQuest检索平台在今年暑假做了界面升级。为了使您能更快了解升级后的界面功能&#xff0c;ProQuest公司准备了中文版用户使用手册…

【CSS】前端点点点加载小点样式css动画过程实现

对话的 ... 加载动画&#xff0c;直接用 CSS 就可以实现&#xff0c;样式可以自己改&#xff0c;逻辑大差不差 <div class"loading-text"><span class"dot1"></span><span class"dot2"></span><span class&quo…

锁--07_1----插入意向锁-Insert加锁过程

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 插入意向锁MySQL执行插入Insert时的加锁过程MySQL官方文档MySQL insert加锁流程1.加插入意向锁2.判断插入记录是否有唯一键3. 插入记录并对记录加X锁插入意向锁----…

基于单片机的智能导盲杖设计 (论文+源码)

1. 系统设计 应用STC89C52单片机微处理器进行研究一种智能手杖系统&#xff0c;需要同时实现超声波自动测距、语音自动报警、距离自动显示、电机震动报警、LED指示灯灯光明灭自动提醒等多种功能&#xff0c;在手机通信提醒模式下手机用户可拨打固定手机电话信号实现手机通信提…

RabbitMQ插件详解:rabbitmq_message_timestamp【Rabbitmq 五】

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 RabbitMQ时空之旅&#xff1a;rabbitmq_message_timestamp的奇妙世界 前言什么是rabbitmq_message_timestamprabbitmq_message_timestamp 的定义与作用&#xff1a;如何在 RabbitMQ 中启用消息时间戳&…

【setDS】牛客小白月赛83 E

登录—专业IT笔试面试备考平台_牛客网 题意 思路 首先&#xff0c;一个必要步骤是把它转化为两个序列&#xff0c;这样就变成了一个序列DS问题 我们的答案是一个位置 pos 后面还有多少位置和这个位置的颜色相同&#xff0c;考虑得到这个答案我们需要维护什么东西 我们只需要…

Knife4j 接口文档如何设置 Authorization 鉴权参数?

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

uniapp实现检查版本检测,更新

1.首先需要获取当前app的版本 const systemInfo uni.getSystemInfoSync();// 应用程序版本号// #ifdef APPme.version systemInfo.appWgtVersion;// #endif// #ifdef H5me.version systemInfo.appVersion;// #endif2.在获取到服务器保存的app版本 3.点击按钮验证版本号 //…

每天五分钟计算机视觉:Inception网络是由多个Inception模块构成

本文重点 inception从另一种角度来提升训练结果:能更高效的利用计算资源,在相同的计算量下能提取到更多的特征,从而提升训练结果。可以简单的理解为Inception 网络是由一个一个的Inception模块构建成的,我们来看一下。 Inception模块 如上就是Inception模块的 通过一个1…