Python多态原理及实现

对于弱类型的语言来说,变量并没有声明类型,因此同一个变量完全可以在不同的时间引用不同的对象。当同一个变量在调用同一个方法时,完全可能呈现出多种行为(具体呈现出哪种行为由该变量所引用的对象来决定),这就是所谓的多态(Polymorphism)。

先看下面程序:

class Bird:
    def move(self, field):
        print('鸟在%s上自由地飞翔' % field)
class Dog:
    def move(self, field):
        print('狗在%s里飞快的奔跑' % field)
# x变量被赋值为Bird对象
x = Bird()
# 调用x变量的move()方法
x.move('天空')
# x变量被赋值为Dog对象
x = Dog()
# 调用x变量的move()方法
x.move('草地')

上面程序中 x 变量开始被赋值为 Bird 对象,因此当 x 变量执行 move() 方法时,它会表现出鸟类的飞翔行为。接下来 x 变量被赋值为 Dog 对象,因此当 x 变量执行 move() 方法时,它会表现出狗的奔跑行为。

运行上面程序,可以看到如下运行结果:

鸟在天空上自由地飞翔
狗在草地里飞快的奔跑

从上面的运行结果可以看出,同一个变量 x 在执行同一个 move() 方法时,由于 x 指向的对象不同,因此它呈现出不同的行为特征,这就是多态。

看到这里,可能有读者感到失望,这个多态有什么用啊?不就是创建对象、调用方法吗?看不出多态有什么优势啊?

实际上,多态是一种非常灵活的编程机制。假如我们要定义一个 Canvas(画布)类,这个画布类定义一个 draw_pic() 方法,该方法负责绘制各种图形。该 Canvas类的代码如下:

class Canvas:
    def draw_pic(self, shape):
        print('--开始绘图--')
        shape.draw(self)

从上面代码可以看出,Canvas 的 draw_pic() 方法需要传入一个 shape 参数,该方法就是调用 shape 参数的 draw() 方法将自己绘制到画布上。

从上面程序来看,Canvas 的 draw_pic() 传入的参数对象只要带一个 draw() 方法就行,至于该方法具有何种行为(到底执行怎样的绘制行为),这与 draw_pic() 方法是完全分离的,这就为编程增加了很大的灵活性。下面程序定义了三个图形类,并为它们都提供了 draw() 方法,这样它们就能以不同的行为绘制在画布上,这就是多态的实际应用。看如下示例程序:

class Canvas:
    def draw_pic(self, shape):
        print('--开始绘图--')
        shape.draw(self)

class Rectangle:
    def draw(self, canvas):
        print('在%s上绘制矩形' % canvas)
class Triangle:
    def draw(self, canvas):
        print('在%s上绘制三角形' % canvas)
class Circle:
    def draw(self, canvas):
        print('在%s上绘制圆形' % canvas)
c = Canvas()
# 传入Rectangle参数,绘制矩形
c.draw_pic(Rectangle())
# 传入Triangle参数,绘制三角形
c.draw_pic(Triangle())
# 传入Circle参数,绘制圆形
c.draw_pic(Circle())

运行上面代码, 可以看到如下输出结果:

--开始绘图--
在<__main__.Canvas object at 0x0000021CA36364A8>上绘制矩形
--开始绘图--
在<__main__.Canvas object at 0x0000021CA36364A8>上绘制三角形
--开始绘图--
在<__main__.Canvas object at 0x0000021CA36364A8>上绘制圆形

从上面这个例子可以体会到 Python 多态的优势。当程序涉及 Canvas 类的 draw_pic() 方法时,该方法所需的参数是非常灵活的,程序为该方法传入的参数对象只要具有指定方法就行,至于该方法呈现怎样的行为特征,则完全取决于对象本身,这大大提高了 draw_pic() 方法的灵活性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/248286.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Star 4.1k!Gitee GVP开源项目!新一代桌面应用开发框架 ElectronEgg!

前言 随着现代技术的快速升级迭代及发展&#xff0c;桌面应用开发已经变得越来越普及。然而对于非专业桌面应用开发工程师在面对这项任务时&#xff0c;可能会感到无从下手&#xff0c;甚至觉得这是一项困难的挑战。 本篇文章将分享一种新型桌面应用开发框架 ElectronEgg&…

机器学习支持向量机(SVM)

svm与logstic异同 svm支持向量机&#xff0c;因其英文名为support vector machine&#xff0c;故一般简称SVM&#xff0c;通俗来讲&#xff0c;它是一种二类分类模型&#xff0c;其基本模型定义为特征空间上的间隔最大的线性分类器&#xff0c;其学习策略便是间隔最大化&#x…

探索多功能SQL数据库编辑器 - Richardson Software RazorSQL

在当今数字化时代&#xff0c;SQL数据库的管理和编辑是许多企业和开发人员必不可少的任务。为了提高生产力和简化数据库操作&#xff0c;Richardson Software推出了一款强大而多功能的SQL数据库编辑器 - RazorSQL。 RazorSQL是一款功能全面的数据库管理工具&#xff0c;可适用…

ansible的基本使用

本章主要介绍在RHEL8中如何安装ansible 及 ansible 的基本使用。 ansible是如何工作的在 RHEL8中安装ansible编写ansible.cfg和清单文件ansible 的基本用法 如果管理的服务器很多&#xff0c;如几十台甚至几百台&#xff0c;那么就需要一个自动化管理工具了&#xff0c; ansi…

使用opencv的Laplacian算子实现图像边缘检测

1 边缘检测介绍 图像边缘检测技术是图像处理和计算机视觉等领域最基本的问题&#xff0c;也是经典的技术难题之一。如何快速、精确地提取图像边缘信息&#xff0c;一直是国内外的研究热点&#xff0c;同时边缘的检测也是图像处理中的一个难题。早期的经典算法包括边缘算子方法…

环境搭建及源码运行_java环境搭建_maven

1、介绍 1&#xff09;管理项目依赖和版本 统一的项目依赖和版本管理 2&#xff09;Maven支持多模块项目管理 通过定义父子模块的关系来管理多个子模块的构建和依赖关系。使用Maven可以实现多模块项目的统一管理和构建&#xff0c;从而提高项目的可维护性和可重用性。 3&#x…

初识Python解释器————解释器模式(后续更新...)

学习网页&#xff1a; Welcome to Python.orghttps://www.python.org/https://www.python.org/ Python解释器 Python解释器是用于执行Python代码的程序。Python解释器将Python代码转换为机器语言并执行它。 Python解释器有多种实现&#xff0c;包括CPython、IPython、Jython…

GPT 魔力涌现

GPT 二、Prompt 的典型构成 角色&#xff1a;给 AI 定义一个最匹配任务的角色&#xff0c;比如&#xff1a;「你是一位软件工程师」「你是一位小学老师」指示&#xff1a;对任务进行描述上下文&#xff1a;给出与任务相关的其它背景信息&#xff08;尤其在多轮交互中&#xff…

Feign调用服务报错:Load balancer does not have available server for client:xxx

1.说一下遇到的bug:,&#xff08;黑马程序员springcloud的第30集&#xff0c;基于Feign远程调用&#xff09; 3个服务正常启动&#xff1a; 访问http://localhost:8080/order/101 服务器报错日志&#xff1a;&#xff08;orderservice想调用userservice结果找不到userservice&…

【EMQX】通过EMQX webhook实现转发消息到Python web服务器

EMQX webhook消息转发Web服务器 一、前言二、实现1、EMQX服务器搭建EMQX下载、安装、启动 2、本地Web服务搭建创建Flask项目代码 3、EMQX中创建webhook数据桥接4、EMQX中创建数据转发规则 三、效果 一、前言 需求&#xff1a;获取设备通过mqtt协议发送过来的数据并将数据保存到…

cgal教程 3D Alpha Wrapping

文章目录 3D Alpha Wrapping (3D alpha 包裹)1 介绍2 方法2.1 算法2.2 保证 3 接口4 选择参数4.1 alpha4.2 Offset4.3 关于“双面”包裹的注意事项 5 性能6 例子 3D Alpha Wrapping (3D alpha 包裹) 原文地址: https://doc.cgal.org/latest/Alpha_wrap_3/index.html#Chapter_3D…

数智赋能进行时 百望云荣获第四届长三角“金融科技领军企业”奖

近日&#xff0c;由上海金融业联合会、上海市银行同业公会、华东师范大学指导&#xff0c;《金融电子化》杂志社有限责任公司、华东师范大学长三角金融科技研究院等单位联合主办&#xff0c;上海市互联网金融行业协会等单位协办的“2023长三角金融科技节——长三角经济圈金融科…

微服务实战系列之ZooKeeper(上)

前言 历经1个多月的创作和总结&#xff0c;纵观博主微服务系列博文&#xff0c;大致脉络覆盖了以下几个方面&#xff1a; 数据方面&#xff08;缓存&安全&#xff09; 比如Redis、MemCache、Ehcache、J2cache&#xff08;两级缓存框架&#xff09;、RSA加密、Sign签名…传…

力扣22. 括号生成(java 回溯法)

Problem: 22. 括号生成 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 我们首先要知道&#xff0c;若想生成正确的括号我们需要让右括号去适配左括号&#xff0c;在此基础上我们利用回溯去解决此题目 1.题目给定n个括号&#xff0c;即当回溯决策路径长度等于 2 n 2n…

学习笔记9——JUC三种量级的锁机制

学习笔记系列开头惯例发布一些寻亲消息 链接&#xff1a;https://baobeihuijia.com/bbhj/contents/3/197325.html 多线程访问共享资源冲突 临界区&#xff1a;一段代码块存在对共享资源的多线程读写操作&#xff0c;称这段代码块为临界区 竞态条件&#xff1a;多个线程在临界…

Anaconda文件目录(打开默认路径)更改

Anaconda 文件默认目录更改 每次打开 Anaconda 都在C盘怎么办&#xff0c;如何改为D盘或是其他盘符位置&#xff1f; 可以进行下述操作。 1. 单次修改路径 单次修改路径&#xff1a;在 exe 文件(Anaconda Prompt (Anaconda_py))中写入下面代码&#xff1a; jupyter notebook …

微信小程序ec-canvas(echarts)显示地图【以甘肃省为例】

文章目录 一、效果图二、实现1、下载echarts插件2、定制图形&#xff0c;生成 echarts.min.js 文件3、小程序中使用&#xff08;1&#xff09;下载甘肃地图&#xff08;2&#xff09;使用 参考文档《微信小程序使用echarts显示全国地图》《如何在微信小程序开发中使用echarts以…

详解Keras3.0 KerasCV API: StableDiffusion image-generation model

Stable Diffusion 图像生成模型&#xff0c;可用于根据简短的文本描述&#xff08;称为“提示”&#xff09;生成图片 keras_cv.models.StableDiffusion(img_height512, img_width512, jit_compileTrue) 参数说明 img_height&#xff1a;int&#xff0c;要生成的图像的高度…

安路IP核应用举例(OSC、UART)

1.OSC(内部振荡器) 按照Project->New Project顺序新建工程后&#xff0c;后按照Tools->IP Generator顺序&#xff0c;创建IP核&#xff0c;如下图&#xff1a; 安路FPGA的内置OSC振荡模块频率可选30MHz、60MHz。 可选Verilog或VHDL语言。 如图&#xff0c;生成的.v文件只…

美国 AGU 发布 AI 应用手册,明确 6 大指导方针

爆发性的 AI 应用&#xff1a;风险与机遇并存 在空间和环境科学领域&#xff0c;AI 工具的应用越来越广泛——诸如天气预报和气候模拟&#xff0c;能源及水资源管理等等。可以说&#xff0c;我们正在经历前所未有的 AI 应用爆发&#xff0c;面对其中的机遇与风险&#xff0c;更…