智能优化算法应用:基于阴阳对算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于阴阳对算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于阴阳对算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.阴阳对算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用阴阳对算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.阴阳对算法

阴阳对算法原理请参考:https://blog.csdn.net/u011835903/article/details/108295616
阴阳对算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


阴阳对算法参数如下:

%% 设定阴阳对优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明阴阳对算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/248190.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PR模板,复古怀旧电影效果视频制作PR项目工程文件

Premiere复古怀旧电影效果视频制作pr模板项目工程文件下载 这个PR模板以复古城市印象电影质感为特色,结合了电影和数字故障效果。包含6个场景。可以编辑文本、添加媒体和自定义颜色。包含视频教程。4K版本。不需要任何插件。 软件支持:PR2022 | 分辨率&a…

人类简史作者警告:人工智能或将夺取世界主宰 / 机器学习加速新药研发,AI的崭新角色|魔法半周报

我有魔法✨为你劈开信息大海❗ 高效获取AIGC的热门事件🔥,更新AIGC的最新动态,生成相应的魔法简报,节省阅读时间👻 🔥资讯预览 机器学习加速新药研发,AI的崭新角色 2022年中国研发经费总投入突…

RocketMQ源码 Broker-SubscriptionGroupManager 订阅组管理组件源码分析

前言 SubscriptionGroupManager 继承了ConfigManager配置管理组件,拥有将内存数据持久化到磁盘文件subscriptionGroup.json的能力。它主要负责维护所有消费组在内存中的订阅数据。 源码版本:4.9.3 源码架构图 核心数据结构 主要的数据结构比较简单&am…

CMS—评论功能设计

一、需求分析 1.1、常见行为 1.敏感词过滤 2.新增评论(作品下、评论下) 3.删除评论(作品作者、上级评论者、本级作者) 4.上级评论删除关联下级评论 5.逻辑状态变更(上线、下线、废弃...) 6.上逻辑状态变更…

Java报错-Non-terminating decimal expansion; no exact representable decimal result

1. 背景 在使用 BigDecimal 的 divide() 对两个数相除时,报了如题的错误。 public class Test {public static void main(String[] args) {BigDecimal b1 new BigDecimal(1);BigDecimal b2 new BigDecimal(3);System.out.println(b1.divide(b2)); // Sys…

jupyter notebook介绍、安装和使用

简介 Jupyter Notebook是基于网页的用于交互计算的应用程序。其可被应用于全过程计算:开发、文档编写、运行代码和展示结果。——Jupyter Notebook官方介绍 简而言之,Jupyter Notebook是以网页的形式打开,可以在网页页面中直接编写代码和运…

Shell三剑客:文本过滤工具——grep

一、简介&#xff1a;过滤&#xff0c;查找文档中的内容 二、分类 grepegrep——扩展支持正则\w所有字母与数字&#xff0c;称为字符[a-zA-Z0-9] l[a-zA-Z0-9]*ve l\w*ve\W所有字母与数字之外的字符&#xff0c;称为非字符 love[^a-zA-Z0-9] love\W\b词边界 \<love\>…

力扣每日一题day32[104. 二叉树的最大深度]

给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3示例 2&#xff1a; 输入&#xff1a;root [1,null,2] 输出…

winform中也可以这样做数据展示✨

1、前言 在做winform开发的过程中&#xff0c;经常需要做数据展示的功能&#xff0c;之前一直使用的是gridcontrol控件&#xff0c;今天想通过一个示例&#xff0c;跟大家介绍一下如何在winform blazor hybrid中使用ant design blazor中的table组件做数据展示。 2、效果 先来…

MYSQL练题笔记-子查询-换座位

一、题目相关内容 1&#xff09;相关的表和题目 2&#xff09;帮助理解题目的示例&#xff0c;提供返回结果的格式 二、自己初步的理解 没啥思路&#xff0c;我还没做过交换的这种题&#xff0c;所以我觉得这类交换的题以后值得做一个合集&#xff0c;是有点灵活度在里面的&a…

computed 和 watch 的奇妙世界:让数据驱动你的 Vue 应用(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

海思平台isp之ccm标定

文章目录 1、raw图采集2、ccm标定2.1、标定参数配置2.2、标定效果优化2.2.1、优化方式一2.2.2、优化方式二2.2.3、优化方式三1、raw图采集 raw图采集步骤及标准,请参考文章 《海思平台isp之ccm标定》。2、ccm标定 2.1、标定参数配置 (1)图像基本参数 (2)黑电平设置 (…

VR播控系统深耕VR教学领域,助力开启未来新课堂

作为提升教育质量的技术之一&#xff0c;VR技术已经逐渐成为培养新一代人才、提升教学质量的重要方式&#xff0c;相比于传统教育&#xff0c;VR技术在教学方面的应用&#xff0c;所带来的变化和效果提升都是非常明显的&#xff0c;尤其是VR播控系统的上线&#xff0c;作为VR教…

CDH6.3.2安装

文章目录 [toc]一、CM简介1、ClouderaManager的概念2、ClouderaManager的功能3、ClouderaManager的架构 二、准备清单1、部署步骤2、集群规划3、软件环境准备 三、安装清单1、操作系统iso包2、JDK包3、MySQL包4、CM和CDH包5、部署ansible 四、基础环境准备1、配置网络2、配置ho…

Doris学习笔记

目录 简介 特点 MPP数据库 PB和EB都是用来衡量数据存储量的单位。 秒级响应 Google Mesa Apache Impala 支持标准sql且兼容mysql协议 ROLAP OLAP&#xff08;On-Line Analytical Processing&#xff0c;联机分析处理&#xff09; ROLAP&#xff08;Relational On-Line An…

理解Mysql索引原理及特性

作为开发人员&#xff0c;碰到了执行时间较长的sql时&#xff0c;基本上大家都会说”加个索引吧”。但是索引是什么东西&#xff0c;索引有哪些特性&#xff0c;下面和大家简单讨论一下。 1 索引如何工作&#xff0c;是如何加快查询速度 索引就好比书本的目录&#xff0c;提高数…

智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.差分进化算法4.实验参数设定5.算法结果6.…

FTP、U盘等传统数据安全摆渡方法的6个弊端

数据安全摆渡&#xff0c;即数据在不同的网络之间&#xff0c;进行安全流转。做网间隔离的初衷&#xff0c;就是为了保护数据安全&#xff0c;但是在数据摆渡时&#xff0c;除了安全&#xff0c;企业还是需要考虑其他的要素&#xff0c;比如可靠性、易用性、兼容性等等。而传统…

linux 防火墙systemctl (个人笔记)

查看 systemctl status firewalld 开启 systemctl start firewalld 关闭 systemctl stop firewalld.service 查看所有 firewall-cmd --zonepublic --list-ports 开放端口&#xff1a;// --permanent 永久生效,没有此参数重启后失效 firewall-cmd --zonepublic --add-port9527/…

c语言 词法分析器《编译原理》课程设计 文本形式保存

词法分析器的功能输入源程序&#xff0c;按照构词规则分解成一系列单词符号。单词是语言中具有独立意义的最小单位&#xff0c;包括关键字、标识符、运算符、界符和常量等。 (1) 关键字&#xff1a;是由程序语言定义的具有固定意义的标识符。例如begin&#xff0c;end&#xf…