Knowledge Graph知识图谱—9. Knowledge Modeling

9. Knowledge Modeling & Ontology Engineering

How should the knowledge in a KG be modeled?
– Which classes of entities do we have?
– Which relations connect them?
– Which constraints hold for them?
→ these questions are defined in the ontology of the knowledge graph

How we have built ontologies so far
– Read the requirements
– Pick a starting point at random
– Start playing around in Protégé
– Trial and error driven

That was rather “Ontology Hacking” than “Ontology Engineering”

How to build ontologies?
Methodologies

How to build good ontologies?
– Best Practices
– Design Patterns
– Anti Patterns
– Top Level Ontologies

The SECI Model
Two type of knowledge
Tacit Knowledge
intuitive, hard to formalize
e.g., riding a bike, playing improvised music
Explicit knowledge
formalized
e.g., kinematics, music theory
Tacit knowledge is created from explicit knowledge and vice versa. Knowledge creation is usually a cooperative process
Knowledge creation
SECI 模型,也被称为知识转换模型,它描述了组织内知识创造和转换的过程。SECI 代表社会化(Socialization)、外部化(Externalization)、结合(Combination)、内部化(Internalization)。
社会化(Socialization):
这种模式涉及通过直接互动和共同经验分享隐性知识。隐性知识是个人的、难以形式化的,比如技能、洞察力和直觉。社会化发生在个体相互作用、观察和相互学习的过程中。这个模式强调通过社交活动(如导师制度、学徒制度和共同经验)进行学习。
外部化(Externalization):
外部化是将隐性知识表达成明确概念的过程。它涉及将个体的隐性知识转化为可以被传达和理解的共享概念和模型。这种模式通常采用叙述、隐喻或类比的方式,将内隐的知识转化为明确、可传达的形式。
结合(Combination):
在结合模式中,明确知识被组合和组织。这涉及对明确知识的系统收集、分类和重组。结合的目标是通过以有意义的方式组织现有的明确知识来创造新的知识。这个模式通常通过创建数据库、手册或其他结构化的知识库来实现。
内部化(Internalization):
内部化是将明确知识体现为隐性知识的过程。在这个模式中,个体获得明确知识并通过将其应用和整合到个人隐性知识中来内部化。这涉及通过实践、操作和获得个人经验来学习。内部化通过将明确知识重新转化为个体的隐性知识来完成循环。

9.1 Methodologies

方法论(Methodology)是指研究、学科或领域内,用于解决问题、推进研究或实施工作的一套原则、规范、程序、技术和方法的体系。它是一种系统性的、有组织的方法体系,用于引导人们在特定领域或活动中进行系统、科学、可重复的工作。

9.1.1 Grüninger & Fox’s Methodology

Grüninger & Fox’s Methodology 是一种用于本体建模的方法论,特别关注于描述和表示领域知识的形式化。
Grüninger & Fox’s Methodology

9.1.2 Methontology

Grüninger & Fox’s Methodology
Step by step from less to more formal ontologies
Stepping back is allowed
Documentation is produced along the way
Glossary: Terms, descriptions, synonyms, antonyms
Taxonomy: Sub class relations
Ad hoc binary relations: a.k.a. ObjectProperties
Concept dictionary contains: terms, descriptions, relations, instances (optional)

9.1.3 OntoClean

Methodology
A collection of analysis methods and tests
– Does my class hierarchy make sense?
Rule1: Rigidity
OntoClean distinguishes rigid and non-rigid classes
If an entity belongs to a rigid class, this holds once and for all, i.e.: if the entity does not belong to that class anymore, it ceases to exist
This does not hold for non-rigid classes
Examples for rigid classes: Person, mountain, company
Examples for non-rigid classes: Student, stock company, town, Caterpillar and butterfly

OntoClean rule: Rigid classes must not be subclasses of non-rigid classes

OntoClean1
OntoClean2

Other typical rigidity problems
PhysicalObject > Animal
An entity may die and thus be no longer an animal. If we consider “living” as necessary for animals. The physical object (i.e., the body), however, still exists.

Rule2: Identity
Identity1

Let us look at some instances
– :1h a :Duration . :2h a :Duration . …
– :Mo10-11 a :Interval . :Mo11-12 a :Interval . …
Obviously, there are more instances of Interval than there are instances of Duration [contradiction]

How do we know that two entities are the same?
Some classes have criteria for identity
• Immatriculation number of students
• Tax number for citizens and companies
• Country codes
• …

Identity2

Identity3

Identity4

Observation: The identity criteria are of the two classes are different

OntoClean rule: If p is a subclass of q, then p must not have any identity criteria that q does not have

Identity5

Identity6

Rule3: Unity
For some classes, entities can be decomposed into instances of the same class. We call them “anti unity classes
Examples:
An amount of water into two amounts of water
A group into two sub groups

Other classes only have “whole” instances → “unity classes”, e.g., people, cities
For “whole” individuals, there is always a functional relation unambiguosly relating a part to the whole
Examples:
relating a body part to a person
relating a district to a city
Unity1

Unity2

Unity3

OntoClean rule: Unity classes may only have unity classes as their subclasses. Anti unity classes may only have anti unity classes as their subclasses
In our example:
– OrganicMatter is an anti unity class
– Animal is a unity class

Unity4
Unity5

Summarizing OntoClean
A number of tests that can be carried out on ontologies
– Rigidity, Identity, Unity
– Reveal possible mismodeling issues
– Avoid nonsensical reasoning consequences

9.2 Ontology Design Patterns

Origin of the term “design pattern”
Architecture
– Recurring problems
– Standard solutions with certain degrees of freedom

Example
– Problem: rain falls into the building
– Solution: roof
• Degrees of freedom: shed roof, saddle roof, hip roof…

Types of Ontology Design Patterns

  • Presentation Patterns, e.g., naming conventions
  • Logical Patterns: Domain independent, Always specific to a language (e.g., OWL DL)
  • Content Patterns: Domain dependent and Language independent
  • Transformation Patterns (e.g., how to transform an ontology from one language to the other)

9.2.1 Presentation Patterns

Presentation Patterns

9.2.2 Logical Patterns

Logical Patterns

9.2.3 Content Pattern

Content Pattern

9.3 Anti-Patterns

Things that should not be done. But are often done and cause some problems.
Possible causes
– Not thought about each and every consequence
– Little/wrong understanding of RDF/OWL principles

Rampant Classism
Anti Pattern: Rampant Classism1
Anti Pattern: Rampant Classism2

How to distinguish classes and instances?
For every class, there must be (one or more) instance(s)
– What should be instances of Goethe?
– Are there any sentences like “X is a Goethe”?
Sub class relations must make sense
– Pattern: “Every X is a Y”
– “Every Goethe is a Writer”?
No, so Goethe is not a sub class of writer.

Exclusivity
Exclusivity1

Exclusivit2

What is happening here?
Ontology was built exclusively for a domain, e.g., cities. Breaks if used in another context (here: countries)

Semantic Web Principles
AAA (Anybody can say Anything about Anything) i.e., statements should work in different contexts

Another example:
Every person is married to at most one other person

Exclusivity3

9.4 Classification of Ontologies

Classification of Ontologies

9.4.1 Top Level Ontologies

Top Level Ontologies (Very general)

  • Domain independent
  • Task independent
    Goal
  • Reuse
  • Semantic clarity
  • Modeling guidance (i.e., avoid bad modeling)
  • Interoperability

Aristotle’s Ontological Square
One of the oldest top level ontologies
Aristotle's Ontological Square

Basic Categories for Top Level Ontologies
Abstract vs. concrete entities
Abstract entities do neither have a temporal nor a spatial dimension, eg. Numbers, Units of measure
Concrete entities do at least have a temporal dimension,i.e., a time span at which they exist (spatial is optional), e.g. Things (books, tables, …), Events (lectures, tournaments, …)

3D vs. 4D view
3D view: Things extend in space. At every point in time, they are completely present

4D view: Things extend in time and space. At a given point in time, they can also be partially present

Actual vs. possible entities
Actualism: only existing entities are included in an ontology
Possibilism: all possible entities are included in an ontology

Co-location
Can multiple entities exist in the same place?
This should be easy…
– 3D view: no
– 4D view: yes, but not at the same time
…but it is not that trivial

Example: a statue and the amount of clay from which it was made
Do statues even exist?
– Or is there only clay in the shape of a statue?
– …and if both exist, should they belong to the same category?

– Another example: a hole in a piece of Swiss cheese
Do holes even exist? Or are there only perforated objects?

John Sowa’s Top Level Ontology
An “older” top level ontology (1990s)
Three distinctions form twelve basic categories

Physical vs. Abstract
Physical: Things that exist in time (and potentially in space)
Abstract: Things that do not

Continuant vs. Occurent
Continuant: Things that exist as a whole at each point in time
Occurent: Things that partially exist at each point in time (a lecture)

Independent vs. Relative vs. Mediating
Independent: Things that can exist on their own
Relative: Things that require other things to exist
Mediating: “Third” things that relate two others

John Sowa's Top Level Ontology1

John Sowa's Top Level Ontology2

DOLCE
Descriptive Ontology for Linguistic and Cognitive Engineering
One of the most well known top level ontologies

Particulars, universals, and quantities
Universals (think: categories): can have instances
– “City”, “University”
Particulars (think: individuals): cannot have instances
– “Mannheim”, “Mannheim University”
Qualities: describe an instance
– e.g., color of a book, height of a person
– Are neither particulars nor universals
– Cannot exist without an instance

A top level ontology of particulars
For both actual and possible entities (possibilistic view)

4D: Some entities may have a temporal dimension

Co-location
Is allowed
restriction: not two entities of the same kind at the same spatial and temporal location
Not: two statues But: a statue and an amount of clay

Top Hierarchy of DOLCE
Top Hierarchy of DOLCE

Endurants vs. Perdurants
Endurants exist in time
Think: things like people, books, … May also be non-physical: organizations, pieces of information
Are always fully present at each point in time during their existence

Perdurants “happen” in time
Think: events and processes
Only exist partially at each point in time during their existence, i.e., previous and future parts of the perdurant may not (yet|anymore) exist at a given point in time

Qualities are attached to endurants and perdurants

Abstracts: numbers, units of measure, etc.

Endurants take part in perdurants
– Actively (Reader and reading)
– Passively (Book and reading)
– DOLCE defines various types of participation

Endurants only consist of endurants, perdurants only consist of perdurants
– Books consist of pages, cover, …
– Reading consists of perceiving, turning pages, …

Endurants in DOLCE
Endurants in DOLCE1

Endurants in DOLCE2

Distinguishing Endurants
Amount of Matter vs. Phyiscal Object
Amount of Matter is “mereologically invariant”, i.e., a part of an AoM is still an AoM
• A part of “some water” is still “some water”
• But a part of a cup is (likely) not a cup
– cf. unity/anti unity in OntoClean

Features
Cannot exist without a physical endurant, e.g., holes, fringes

Perdurants in DOLCE
Perdurants in DOLCE

Distinguishing Perdurants
Distinguishing Perdurants1
Distinguishing Perdurants2

Qualities
Basic distinction
Quality is a property of an entity
Quality space is the set of possible values of the quality

Qualities need entities
In general, all particulars can have qualities. Qualities only exist as long as the entity exists

Qualities

9.4.2 Other Top Level Ontologies

SUMO: Suggested Upper Merged Ontology
– Around 1,000 classes
– Strong formalization in KIF (Knowledge Interchange Format)
Cyc: stems from EnCyClopedia
– Own language (CycL)
– Top Level and deep general ontology
– ~250,000 classes
– OpenCyc: discontinued, but still available
PROTO: PROTo ONtology
– General top level+ upper level, different domain extensions
– ~300 classes, ~100 relations
Comparison

Example: Usage of DOLCE for DBpedia1

Example: Usage of DOLCE for DBpedia2

Wrap-Up

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/247499.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

javacv的视频截图功能

之前做了一个资源库的小项目,因为上传资源文件包含视频等附件,所以就需要时用到这个功能。通过对视频截图,然后作为封面缩略图,达到美观效果。 首先呢,需要准备相关的jar包,之前我用的是低版本的1.4.2&…

速学数据结构 | 树 森林 二叉树 的概念详讲篇

🎬 鸽芷咕:个人主页 🔥 个人专栏:《速学数据结构》 《C语言进阶篇》 ⛺️生活的理想,就是为了理想的生活! 📋 前言 🌈hello! 各位宝子们大家好啊,关于线性表我们已经在前面更新完了…

【C++入门到精通】 线程库 | thread类 C++11 [ C++入门 ]

阅读导航 引言一、thread类的简单介绍二、线程函数详细介绍1. start() 函数(1)头文件(2)函数原型 2. join() 函数(1)头文件(2)函数原型 3. detach() 函数(1)头…

扫描电镜中的信号-噪声比(SNR)参数如何优化

在扫描电镜(SEM)中,信号-噪声比(SNR)的优化对于获得高质量的图像和可靠的数据分析至关重要。以下是一些优化SNR的方法: 选择适当的检测器:SEM通常配备了不同类型的检测器,如二次电子…

紫光展锐T820与飞桨完成I级兼容性测试 助推端侧AI融合创新

近日,紫光展锐高性能5G SoC T820与百度飞桨完成I级兼容性测试(基于Paddle Lite工具)。测试结果显示,双方兼容性表现良好,整体运行稳定。这是紫光展锐加入百度“硬件生态共创计划”后的阶段性成果。 本次I级兼容性测试完…

多域名https证书购买选择

多域名https证书是一种特殊的SSL证书,它允许一个证书同时保护多个域名,并且不限制域名的类型,可以保护多个域名和子域名,确保网站传输信息时不被窃取、篡改。那么我们该怎么选择符合需求的多域名https证书呢?今天就随S…

基于VGG-16+Android+Python的智能车辆驾驶行为分析—深度学习算法应用(含全部工程源码)+数据集+模型(一)

目录 前言总体设计系统整体结构图系统流程图 运行环境Python环境TensorFlow 环境Pycharm 环境Android环境 相关其它博客工程源代码下载其它资料下载 前言 本项目采用VGG-16网络模型,使用Kaggle开源数据集,旨在提取图片中的用户特征,最终在移…

vue3 使用antd 报错Uncaught TypeError--【已解决】

问题现象 使用最基本的 ant-design-vue 按钮demo 都报错 报错文字如下 Uncaught TypeError: Cannot read properties of undefined (reading value)at ReactiveEffect.fn (ant-design-vue.js?v597f5366:6693:87)at ReactiveEffect.run (chunk-K2VKR2AM.js?v25c381c3:461:…

计算三叉搜索树的高度 - 华为OD统一考试

OD统一考试 分值: 100分 题解: Java / Python / C++ 定义构造三又搜索树规则如下: 每个节点都存有一个数,当插入一个新的数时,从根节点向下寻找,直到找到一个合适的空节点插入查找的规则是: 1.如果数小于节点的数减去500,则将数插入节点的左子树 2.如果数大于节点的数加…

网络(九)CanSM及达芬奇配置

【小猫爪】AUTOSAR学习笔记05-Communication Stack之CanSM模块-CSDN博客 上链接讲的非常好。 CanSM提供的函数。 C CanSM使用的函数:

当你打开终端并输入命令时会发生什么?(下)

哈喽大家好,我是咸鱼 我们先来大致回顾一下文章《当你打开终端并输入命令时会发生什么?(上)》的内容 终端设备是由电传打字机演变过来的,电传打字机通过物理线与大型计算机连接在一块来实现输入输出 如上图,分别是二…

【高效开发工具系列】DataGrip入门

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【回眸】Tessy 单元测试软件使用指南(三)怎么打桩和指针测试

目录 前言 Tessy 如何进行打桩操作 普通桩 高级桩 手写桩 Tessy单元测试之指针相关测试注意事项 有类型的指针(非函数指针): 有类型的函数指针: void 类型的指针: 结语 前言 进行单元测试之后,但凡…

【Proteus仿真】【51单片机】电子门铃设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器,使共阴数码管,按键、无源蜂鸣器等。 主要功能: 系统运行后,数码管默认显示第一种门铃音调,可通过K1键切…

对不起,必须放弃SQL!

尽管SQL很受欢迎,也很成功,但它又总是充斥着种种矛盾。 SQL可能笨拙又冗长,但开发人员又经常发现它往往是他们提取所需数据的最简单直接的方法。当查询写入正确时,它可以快如闪电,当查询出错时,它就会慢如…

LeetCode(62)删除排序链表中的重复元素 II【链表】【中等】

目录 1.题目2.答案3.提交结果截图 链接: 删除排序链表中的重复元素 II 1.题目 给定一个已排序的链表的头 head , 删除原始链表中所有重复数字的节点,只留下不同的数字 。返回 已排序的链表 。 示例 1: 输入:head [1…

像素、分辨率、频率、精度、延迟,关于光学动作捕捉镜头参数的那些事

精准度、分辨率、频率、延迟等参数是影响光学动作捕捉效果和还原度的关键因素。下面逐一介绍NOKOV度量动作捕捉系统的基础参数。 NOKOV度量动作捕捉系统的核心产品是光学动作捕捉镜头,用于捕捉被测物表面反光标记点的三维坐标数据。 从表中可以看到,不同…

Python自动化测试(unittest框架)

一、什么是框架 框架是由大佬开发或者专业的研发团队研发的技术骨架,框架是一个半成品,框架是对常用的功能,基础的代码进行封装的一个工具,这个工具对外提供了一些API,其他的开发者只需要调用框架的接口即可&#xff…

Windows进程机制

进程 进程要做任何事情,必须让一个线程在它的上下文运行。该线程负责执行进程地址空间包含的代码。每个进程至少要有一个线程来执行进程地址空间包含的代码。当系统创建一个进程的时候,会自动为进程创建第一个线程,这称为主线程(…

word文档怎么压缩?超级好用!

当Word文档体积过大时,会遇到传输慢、无法上传等问题,这时候可以通过压缩软件、压缩图片等方式减小Word文档体积,下面就一起来看下具体的操作方法吧。 方法一:嗨格式压缩大师 嗨格式压缩大师是一个专业的压缩软件,可以…