详解—C++右值引用

目录

一、右值引用概念

二、 左值与右值

三、引用与右值引用比较

四、值的形式返回对象的缺陷

五、移动语义

六、右值引用引用左值

七、完美转发

八、右值引用作用


一、右值引用概念

C++98中提出了引用的概念,引用即别名,引用变量与其引用实体公共同一块内存空间,而引用的底层是通过指针来实现的,因此使用引用,可以提高程序的可读性。

void Swap(int& left, int& right)
{
	int temp = left;
	left = right;
	right = temp;
}
int main()
{
	int a = 10;
	int b = 20;
	Swap(a, b);
}

为了提高程序运行效率,C++11中引入了右值引用,右值引用也是别名,但其只能对右值引用。
 

int Add(int a, int b)
{
	return a + b;
}
int main()
{
	const int&& ra = 10;
	// 引用函数返回值,返回值是一个临时变量,为右值
	int&& rRet = Add(10, 20);
	return 0;
}

为了与C++98中的引用进行区分,C++11将该种方式称之为右值引用。
 

二、 左值与右值

左值与右值是C语言中的概念,但C标准并没有给出严格的区分方式,一般认为:可以放在=左边的,或者能够取地址的称为左值,只能放在=右边的,或者不能取地址的称为右值,但是也不一定完全正确。


int g_a = 10;
// 函数的返回值结果为引用
int& GetG_A()
{
	return g_a;
}
int main()
{
	int a = 10;
	int b = 20;
	// a和b都是左值,b既可以在=的左侧,也可在右侧,
	// 说明:左值既可放在=的左侧,也可放在=的右侧
	a = b;
	b = a;
	const int c = 30;
	// 编译失败,c为const常量,只读不允许被修改
	//c = a;
	// 因为可以对c取地址,因此c严格来说不算是左值
	cout << &c << endl;
	// 编译失败:因为b+1的结果是一个临时变量,没有具体名称,也不能取地址,因此为右值
	//b + 1 = 20;
	GetG_A() = 100;
	return 0;
}

因此关于左值与右值的区分不是很好区分,一般认为:

1. 普通类型的变量,因为有名字,可以取地址,都认为是左值。
2. const修饰的常量,不可修改,只读类型的,理论应该按照右值对待,但因为其可以取地址(如果只是const类型常量的定义,编译器不给其开辟空间,如果对该常量取地址时,编译器才为其开辟空间),C++11认为其是左值。
3. 如果表达式的运行结果是一个临时变量或者对象,认为是右值。
4. 如果表达式运行结果或单个变量是一个引用则认为是左值。

总结:

1. 不能简单地通过能否放在=左侧右侧或者取地址来判断左值或者右值,要根据表达式结果或变量的性质判断,比如上述:c常量
2. 能得到引用的表达式一定能够作为引用,否则就用常引用。

C++11对右值进行了严格的区分:

C语言中的纯右值,比如:a+b, 100
将亡值。比如:表达式的中间结果、函数按照值的方式进行返回。

三、引用与右值引用比较

在C++98中的普通引用与const引用在引用实体上的区别:

int main()
{
	// 普通类型引用只能引用左值,不能引用右值
	int a = 10;
	int& ra1 = a; // ra为a的别名
	//int& ra2 = 10; // 编译失败,因为10是右值
	const int& ra3 = 10;
	const int& ra4 = a;
	return 0;
}

注意: 普通引用只能引用左值,不能引用右值,const引用既可引用左值,也可引用右值。
C++11中右值引用:只能引用右值,一般情况不能直接引用左值。

int main()
{
	// 10纯右值,本来只是一个符号,没有具体的空间,
	// 右值引用变量r1在定义过程中,编译器产生了一个临时变量,r1实际引用的是临时变量
	int&& r1 = 10;
	r1 = 100;
	int a = 10;
	int&& r2 = a; // 编译失败:右值引用不能引用左值
	return 0;
}

四、值的形式返回对象的缺陷


如果一个类中涉及到资源管理,用户必须显式提供拷贝构造、赋值运算符重载以及析构函数,否则编译器将会自动生成一个默认的,如果遇到拷贝对象或者对象之间相互赋值,就会出错,比如:

class String
{
public:
	String(char* str = "")
	{
		if (nullptr == str)
			str = "";
		_str = new char[strlen(str) + 1];
		strcpy(_str, str);
	}
	String(const String& s)
		: _str(new char[strlen(s._str) + 1])
	{
		strcpy(_str, s._str);
	}
	String& operator=(const String& s)
	{
		if (this != &s)
		{
			char* pTemp = new char[strlen(s._str) + 1];
			strcpy(pTemp, s._str);
			delete[] _str;
			_str = pTemp;
		}
		return *this;
	}
	String operator+(const String& s)
	{
		char* pTemp = new char[strlen(_str) + strlen(s._str) + 1];
		strcpy(pTemp, _str);
		strcpy(pTemp + strlen(_str), s._str);
		String strRet(pTemp);
		return strRet;
	}
	~String()
	{
		if (_str) delete[] _str;
	}
private:
	char* _str;
};
int main()
{
	String s1("hello");
	String s2("world");
	String s3(s1 + s2);
	return 0;
}

上述代码看起来没有什么问题,但是有一个不太尽人意的地方:

在operator+中:strRet在按照值返回时,必须创建一个临时对象,临时对象创建好之后,strRet就被销毁了,最后使用返回的临时对象构造s3,s3构造好之后,临时对象就被销毁了。仔细观察会发现:strRet、临时对象、s3每个对象创建后,都有自己独立的空间,而空间中存放内容也都相同,相当于创建了三个内容完
全相同的对象,对于空间是一种浪费,程序的效率也会降低,而且临时对象确实作用不是很大
,那能否对该种情况进行优化呢?

五、移动语义

C++11提出了移动语义概念,即:将一个对象中资源移动到另一个对象中的方式,可以有效缓解该问题。

在C++11中如果需要实现移动语义,必须使用右值引用。上述String类增加移动构造:

String(String&& s)
	: _str(s._str)
{
	s._str = nullptr;
}

因为strRet对象的生命周期在创建好临时对象后就结束了,即将亡值,C++11认为其为右值,在用strRet构造临时对象时,就会采用移动构造,即将strRet中资源转移到临时对象中。而临时对象也是右值,因此在用临时对象构造s3时,也采用移动构造,将临时对象中资源转移到s3中,整个过程,只需要创建一块堆内存即可,既省了空间,又大大提高程序运行的效率。

注意:

1. 移动构造函数的参数千万不能设置成const类型的右值引用,因为资源无法转移而导致移动语义失效。
2. 在C++11中,编译器会为类默认生成一个移动构造,该移动构造为浅拷贝,因此当类中涉及到资源管理时,用户必须显式定义自己的移动构造。

六、右值引用引用左值

按照语法,右值引用只能引用右值,但右值引用一定不能引用左值吗?因为:有些场景下,可能真的需要用右值去引用左值实现移动语义。当需要用右值引用引用一个左值时,可以通过move函数将左值转化为右值。C++11中,std::move()函数位于 头文件中,该函数名字具有迷惑性,它并不搬移任何东西,唯一的功能就是将一个左值强制转化为右值引用,然后实现移动语义。

template<class _Ty>
inline typename remove_reference<_Ty>::type&& move(_Ty&& _Arg) _NOEXCEPT
{
// forward _Arg as movable
return ((typename remove_reference<_Ty>::type&&)_Arg);
}

注意:

1. 被转化的左值,其生命周期并没有随着左值的转化而改变,即std::move转化的左值变量lvalue不会被销毁。
2. STL中也有另一个move函数,就是将一个范围中的元素搬移到另一个位置。

int main()
{
String s1("hello world");
String s2(move(s1));
String s3(s2);
return 0;
}

注意:以上代码是move函数的经典的误用,因为move将s1转化为右值后,在实现s2的拷贝时就会使用移动构造,此时s1的资源就被转移到s2中,s1就成为了无效的字符串。


使用move的一个例子:

class Person
{
public:
	Person(char* name, char* sex, int age)
		: _name(name)
		, _sex(sex)
		, _age(age)
	{}
	Person(const Person& p)
		: _name(p._name)
		, _sex(p._sex)
		, _age(p._age)
	{}
#if 0
	Person(Person&& p)
		: _name(p._name)
		, _sex(p._sex)
		, _age(p._age)
	{}
#else
	Person(Person&& p)
		: _name(move(p._name))
		, _sex(move(p._sex))
		, _age(p._age)
	{}
#endif
private:
	String _name;
	String _sex;
	int _age;
};
Person GetTempPerson()
{
	Person p("prety", "male", 18);
	return p;
}
int main()
{
	Person p(GetTempPerson());
	return 0;
}

七、完美转发

完美转发是指在函数模板中,完全依照模板的参数的类型,将参数传递给函数模板中调用的另外一个函数。

void Func(int x)
{
	// ......
}
template<typename T>
void PerfectForward(T t)
{
	Fun(t);
}

PerfectForward为转发的模板函数,Func为实际目标函数,但是上述转发还不算完美,完美转发是目标函数总希望将参数按照传递给转发函数的实际类型转给目标函数,而不产生额外的开销,就好像转发者不存在一样。

所谓完美:函数模板在向其他函数传递自身形参时,如果相应实参是左值,它就应该被转发为左值;如果相应实参是右值,它就应该被转发为右值。这样做是为了保留在其他函数针对转发而来的参数的左右值属性进行不同处理(比如参数为左值时实施拷贝语义;参数为右值时实施移动语义)。

C++11通过forward函数来实现完美转发, 比如:

void Fun(int& x) 
{ 
	cout << "lvalue ref" << endl;
}
void Fun(int&& x)
{
	cout << "rvalue ref" << endl;
}
void Fun(const int& x)
{ 
	cout << "const lvalue ref" << endl;
}
void Fun(const int&& x)
{ 
	cout << "const rvalue ref" << endl;
}

template<typename T>
void PerfectForward(T&& t) { Fun(std::forward<T>(t)); }
int main()
{
	PerfectForward(10); // rvalue ref
	int a;
	PerfectForward(a); // lvalue ref
	PerfectForward(std::move(a)); // rvalue ref
	const int b = 8;
	PerfectForward(b); // const lvalue ref
	PerfectForward(std::move(b)); // const rvalue ref
	return 0;
}

八、右值引用作用


C++98中引用作用:因为引用是一个别名,需要用指针操作的地方,可以使用指针来代替,可以提高代码的可读性以及安全性。

C++11中右值引用主要有以下作用:

1. 实现移动语义(移动构造与移动赋值)
2. 给中间临时变量取别名:

int main()
{
string s1("hello");
string s2(" world");
string s3 = s1 + s2; // s3是用s1和s2拼接完成之后的结果拷贝构造的新对象
stirng&& s4 = s1 + s2; // s4就是s1和s2拼接完成之后结果的别名
return 0;
}

3. 实现完美转发

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/247034.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

多线程 (下) - 学习笔记

常见锁策略 乐观锁和悲观锁 悲观锁 总是假设最坏的情况, 每次去拿数据的时候都会认为会被别人修改, 因此会上锁, 防止数据在使用过程中被别的线程修改, 乐观锁 假设数据一般情况下不会产生并发冲突,因此在拿数据,操作数据的过程中不加锁, 而在数据进行提交更新的时候, 才会正…

react经验7:高亮关键字

预期效果&#xff1a; 实现原理 将需要高亮的关键词做成正则表达式 new RegExp((${word}), "gi")使用上述正则表达式切割目标字符串 origin.split(new RegExp((${word}), "gi"))切割结果会包含正则匹配到的词 过滤掉空字符&#xff0c;并对关键词包裹…

使用代理IP时的并发请求是什么意思?

很多做过数据采集的技术们应该都有所了解&#xff0c;在选择代理IP时会有一个并发请求的参数&#xff0c;这个参数是什么意思呢&#xff1f;可能有很多新手不是很了解&#xff0c;其实代理IP的并发请求就是指同时发送多个请求到目标服务器&#xff0c;以提高请求的效率和速度。…

LeetCode刷题--- 二叉树的所有路径

个人主页&#xff1a;元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题 【 http://t.csdnimg.cn/yUl2I 】 【C】 【 http://t.csdnimg.cn/6AbpV 】 数据结构与算法 【 http://t.csdnimg.cn/hKh2l 】 前言&…

详解高精度数字模拟混合信号温度传感芯片的工作原理及应用

高精度温度传感芯片是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感芯片。这些呈现规律性变化的物理性质主要有体。温度传感芯片是温度测量仪表的核心部分&#xff0c;品种繁多。按测量方式可分为接触式和非接触式两大类&#xff0c;按照传感器材料及电子元件特…

DES的DPA攻击过程

一般智能卡只使用DES算法对数据进行加密&#xff0c;不采取其他防御措施&#xff0c;所以安全性不高。本博文主要研究智能卡使用DES算法对数据进行加密的具体细节&#xff0c;并针对加密过程中的关键步骤给出DPA攻击的设计思路。 DES数据加密过程 智能卡对密码算法的要求是功…

rocketmq启动nohup mqbroker 显示Exit 253错误解决方案

执行nohup mqbroker -c /usr/local/rocketmq/rocketmq-all-4.9.1-bin-release/conf/2m-2s-sync/broker-b-s.properties启动broker节点 退出253 出现这种错误的原因可能是broker-b-s.properties文件的路劲你提前mkdir了 解决办法&#xff0c;把创建好的文件删除&#xff0c;等…

星座生肖运势配对+周公解梦流量主小程序源码系统 带完整的安装部署教程·

近年来&#xff0c;人们对于星座和生肖的配对以及周公解梦的需求越来越大。罗峰发现了一款集星座、生肖配对和周公解梦于一体的流量主小程序源码系统。该系统具有丰富的功能和易于部署的特点&#xff0c;旨在为广大用户提供更加便捷、高效的星座生肖配对和周公解梦服务。 以下…

利用canvas封装录像时间轴拖动(uniapp),封装上传uniapp插件市场

gitee项目地址,项目是一个空项目,其中包含了封装的插件,自己阅读,由于利用了canvas所以在使用中暂不支持.nvue,待优化; 项目也是借鉴了github上的一个项目,timeline-canvas,​​​​​​​ ​​​​​​​

16--常用类和基础API--06

1、包装类 1.1 包装类概述 Java提供了两个类型系统&#xff0c;基本类型与引用类型&#xff0c;使用基本类型在于效率&#xff0c;然而很多情况&#xff0c;会创建对象使用&#xff0c;因为对象可以做更多的功能&#xff0c;如果想要我们的基本类型像对象一样操作&#xff0c…

Vue组件封装知识总结

一、为什么要封装组件 首先&#xff0c;一个好问题&#xff0c;面试要考的&#xff01;为什么要封装组件呢&#xff1f; 提高代码的复用性&#xff1a;通过封装&#xff0c;可以将一段代码或一部分功能抽象为一个独立的组件&#xff0c;并在不同的项目或场景中重复使用。这样可…

【自定义View】android自定义渐变色圆弧+水波纹布局

本次用ko t lin 写了自定义渐变色圆弧水波纹布局。 备注&#xff1a;双水波纹的手写代码我放在文末了。但我自己写的运行起来有 亿点点难看。 所以效果图里用的 com.scwang.wave:MultiWaveHeader:1.0.0-andx 实现水波纹。--重要的是知道原理。。嘻嘻&#xff01;&#x1f618; …

天猫数据分析(天猫数据查询):11月茅台涨价依然稳居销冠,白酒市场销售现状分析

11月份&#xff0c;贵州茅台宣布涨价。2023年11月1日起茅台上调53%vol贵州茅台酒&#xff08;飞天、五星&#xff09;出厂价格&#xff0c;平均上调幅度约为20%。有媒体报道&#xff0c;随着茅台酒出厂价宣布上调后&#xff0c;市场销售价普遍上涨50元至100元不等。 如今&#…

JVM类加载机制详解及双亲委派机制分析

类加载运行全过程 当我们用java命令运行某个类的main函数启动程序时&#xff0c;首先需要通过类加载器把主类加载到JVM。 public class Math {public static final int initData 666;public static User user new User();public int compute() { //一个方法对应一块栈帧内…

Jmeter接口自动化测试

之前我们的用例数据都是配置在HTTP请求中&#xff0c;每次需要增加&#xff0c;修改用例都需要打开JMeter重新编辑&#xff0c;当用例越来越多的时候&#xff0c;用例维护起来就越来越麻烦&#xff0c;有没有好的方法来解决这种情况呢&#xff1f;我们可以将用例的数据存放在cs…

Java 线程的基本概念

创建和运行线程 方法一&#xff0c;直接使用 Thread // 创建线程对象 Thread t new Thread() {public void run() {// 要执行的任务}};// 启动线程 t.start();例如&#xff1a; // 构造方法的参数是给线程指定名字&#xff0c;推荐 Thread t1 new Thread("t1") …

《PySpark大数据分析实战》-10.独立集群模式的代码运行

&#x1f4cb; 博主简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是wux_labs。&#x1f61c; 热衷于各种主流技术&#xff0c;热爱数据科学、机器学习、云计算、人工智能。 通过了TiDB数据库专员&#xff08;PCTA&#xff09;、TiDB数据库专家&#xff08;PCTP…

【每日一题】反转二叉树的奇数层

文章目录 Tag题目来源题目解读解题思路方法一&#xff1a;广度优先搜索方法二&#xff1a;深度优先搜索 写在最后 Tag 【深度优先搜索】【广度优先搜索】【二叉树】【2023-12-15】 题目来源 2415. 反转二叉树的奇数层 题目解读 反转二叉树奇数层的节点。 解题思路 对于二叉…

ACL原理和配置

一.ACL概述 1.介绍 ACL 访问控制列表&#xff0c;可以通过对网络中报文流的精确识别&#xff0c;与其他技术结合&#xff0c;达到控制网络访问行为、防止网络攻击和提高网络带宽利用率的目的&#xff0c;从而切实保障网络环境的安全性和网络服务质量的可靠性。 2.概述 ACL是…

半导体行业CRM选型推荐,引领企业升级

随着半导体材料行业的快速发展&#xff0c;企业面临着越来越多的挑战。在这个高度竞争的市场中&#xff0c;如何提高销售管理效率、降低成本、优化资源配置成为各企业亟待解决的问题。而引入CRM系统则可以为企业提供一整套信息化解决方案&#xff0c;推动半导体材料行业的持续发…