【深度学习目标检测】四、基于深度学习的抽烟识别(python,yolov8)

YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。

YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。

YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。

在YOLOv8中,还使用了一些技术来提高检测性能。首先是使用了多尺度检测。YOLOv8在不同的尺度上检测物体,这样可以更好地处理物体的大小变化和远近距离差异。其次是利用了FPN(Feature Pyramid Network)结构来提取多尺度特征。FPN可以将不同层级的特征图进行融合,使得算法对不同大小的物体都有较好的适应性。

此外,YOLOv8还利用了一种称为CSPDarknet的网络结构来减少计算量。CSPDarknet使用了CSP(Cross Stage Partial)结构,在网络的前向和后向传播过程中进行特征融合,从而减少了网络的参数量和计算量。

在训练阶段,YOLOv8使用了一种称为CutMix的数据增强技术。CutMix将不同图像的一部分进行混合,从而增加了数据的多样性和鲁棒性。

总而言之,YOLOv8是一种快速而准确的物体检测算法,它通过引入Darknet-53网络、多尺度检测、FPN结构、CSPDarknet结构和CutMix数据增强等技术,实现了对不同大小和距离的物体进行快速、准确的检测。

本文介绍了基于Yolov8的抽烟检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

效果如下图,可以看到,苹果和橘子都被检测出来了(因为数据集太小了,香蕉没检测出来):

一、安装YoloV8

yolov8官方文档:https://docs.ultralytics.com/zh/

安装部分参考:官方安装教程

二、数据集准备

抽烟数据集共包含705个训练图片,78个验证图片,图片示例如下:

原始的数据格式为VOC格式,本文提供转换好的yolov8格式数据集,,可以直接放入yolov8中训练,数据集地址:抽烟数据集yolov8格式

三、修改yolov8配置文件

1、修改数据集配置文件

将path替换成自己的数据集路径:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/smoke/pp_smoke-yolov8  # 更改为自己的数据集路径,建议绝对路ing
train: images/train 
val: images/val  
test: images/val  

# Classes
names:
  
  0: smoke

2、配置模型文件

模型配置文件如下,将nc改成1:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、训练模型

使用如下命令开始训练(将相关路径改成自己的路径,建议改成绝对路径):

yolo detect train project=deploy name=yolov8_smoke exist_ok=True optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8_smoke.yaml  data=ultralytics/ultralytics/cfg/datasets/smoke.yaml

4、评估模型

使用如下命令评估:

yolo detect val imgsz=640 model=deploy/yolov8_smoke/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/smoke.yaml

精度如下:

5、推理

推理代码如下:

from PIL import Image
from ultralytics import YOLO

# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')

# 在'bus.jpg'上运行推理
image_path = 'smoke_a205.jpg'
results = model(image_path)  # 结果列表

# 展示结果
for r in results:
    im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()  # 显示图像
    im.save('results.jpg')  # 保存图像

四、相关资料

本文在训练好的模型和推理代码:推理代码和权重

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/246010.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MacOS多屏状态栏位置不固定,程序坞不小心跑到副屏

目录 方式一:通过系统设置方式二:鼠标切换 MacOS多屏状态栏位置不固定,程序坞不小心跑到副屏 方式一:通过系统设置 先切换到左边 再切换到底部 就能回到主屏了 方式二:鼠标切换 我的两个屏幕放置位置如下 鼠标在…

【三视图】咒语 生成人物

revAnimated_v122.safetensors 杰作,最佳质量,角色设计,三视图,前视图,侧视图,后视觉,呆萌,可爱,简单的背景, (badhandv4:1.4),ng_deepnegative_v1_75t,negat…

OpenCV-Python15:图像阈值处理

目录 目标 图像阈值及分割算法介绍 简单阈值算法 自适应阈值算法 Otsus 二值化算法 Otsus 二值化原理 目标 通过本文你将学到图像二值化、简单阈值处理、自适应阈值、Otsus 二值化等。将学习的函数有cv2.threshold,cv2.adaptiveThreshold 等。 图像阈值及分割算法介…

实验06:VLAN配置

1.实验目的: VLAN(Virtual Local Area Network)是一种通过逻辑方式而不是物理方式划分局域网的技术,可以提高网络性能、安全性和管理效率。VLAN的划分方法有基于端口、基于MAC地址、基于协议和基于IP组播等。VLAN之间的通信需要路…

HPM6750系列--第七篇 Visual Studio Code使用openocd调试查看外设信息

一、目的 在《HPM6750系列--第四篇 搭建Visual Studio Code开发调试环境》我们已经手把手指导大家如何在visual studio code中进行开发,包括编译调试等步骤以及相关配置文件。 但是在实际调试时发现找不到芯片寄存器实时显示的窗口,本篇主要讲解如何实现…

N通道沟槽电源 场效应管 FMB30H100SL

亿胜盈科FMB30H100SL是一款N通道沟槽电源的场效应管(MOS管),FMB30H100SL封装为:TOLL4-6R。

风速预测(二)基于Pytorch的EMD-LSTM模型

目录 前言 1 风速数据EMD分解与可视化 1.1 导入数据 1.2 EMD分解 2 数据集制作与预处理 2.1 先划分数据集,按照8:2划分训练集和测试集 2.2 设置滑动窗口大小为7,制作数据集 3 基于Pytorch的EMD-LSTM模型预测 3.1 数据加载&#xff0…

Jenkins 添加节点报错

报错日志 Error: A JNI error has occurred, please check your installation and try again Exception in thread "main" java.lang.UnsupportedClassVersionError: hudson/remoting/Launcher has been compiled by a more recent version of the Java Runtime (cl…

飞天使-docker知识点5-资源限制与容器的不同状态

文章目录 cpu和内存的限制内存限制的部分参数容器的不同状态docker images 的分层docker registry制作镜像 cpu和内存的限制 默认情况下,容器没有资源限制,可以使用主机内核调度程序允许的尽可能多的 给定资源,Docker 提供了控制容器可以限制…

app分发平台哪个好点?手机app应用内测分发平台支持负载均衡的重要性

随着互联网的快速发展,内测分发平台扮演着越来越重要的角色。而在现代应用程序的开发和运营过程中,负载均衡技术是不可或缺的一部分。内测分发平台支持负载均衡对于提高系统的稳定性、可靠性和性能至关重要。那么什么是负载均衡又有哪些重要性。 图片来源…

通俗理解什么是 LSTM 神经网络

大家好啊,我是董董灿。 刚开始做程序开发时,在公司提交代码前,都需要让大佬们 review(评审),大佬们看完,总会在评论区打出一串"LGTM"。 当时作为小白的我,天真地以为大佬觉得我提交的代码还不错…

Stable Diffusion 源码解析(1)

参考1:https://blog.csdn.net/Eric_1993/article/details/129393890 参考2:https://zhuanlan.zhihu.com/p/613337342 1.StableDiffusion基本原理1.1 UNetModel、FrozenCLIP 模型1.2 DDPM、DDIM、PLMS算法 2. Runwayml SD 源码2.1 Img2Img Pipeline2.2 DD…

论文笔记:详解图注意力网络(GAT)

整理了GAT( ICLR2018 Graph Attention Network)论文的阅读笔记 背景图注意力网络的构建模块与其他模型对比实验 背景 图神经网络的任务可以分为直推式(Transductive)学习与归纳(Inductive)学习: Inductive learning,翻译成中文可以…

C++项目引入依赖_例jsoncpp(MAC/CLion)

1、git clone jsoncpp到本地 jsoncpp github地址:https://github.com/open-source-parsers/jsoncpp/tree/master 2、编译生成 lib 文件 进入jsoncpp文件目录 # 进入 jsoncpp 目录,创建一个新的子目录来存放编译输出: mkdir build &&a…

试以单链表为存储结构实现简单选择排序的算法

简单选择排序,就是每趟把剩余元素最小或者最大的选出来排到前面 这道题值得推敲的是,p作为一个链表结点也是可以作为for循环的初始条件和判断条件的,至于查找到最小值之后,可以把两者的数值进行一个交换,就不用删结点…

SAP ABAP 面试题交流

1.列举AT事件并说明其作用,AT事件中的工作区有何不同? AT FIRST 循环loop中执行第一条数据 AT LAST 循环loop中执行最后一条数据 AT NEW 循环loop中指定字段(包含指定字段)记录与上一条记录不一致数据执行 AT END OF 循环loo…

计算机网络:物理层(奈氏准则和香农定理,含例题)

带你速通计算机网络期末 文章目录 一、码元和带宽 1、什么是码元 2、数字通信系统数据传输速率的两种表示方法 2.1、码元传输速率 2.2、信息传输速率 3、例题 3.1、例题1 3.2、例题2 4、带宽 二、奈氏准则(奈奎斯特定理) 1、奈氏准则简介 2、…

基于亚马逊云科技新功能:Amazon SageMaker Canvas无代码机器学习—以构建货物的交付状态检测模型实战为例深度剖析以突显其特性

授权说明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在亚马逊云科技开发者社区、 知乎、自媒体平台、第三方开发者媒体等亚马逊云科技官方渠道。 目录 🚀一. Amazon SageMaker 🔎1.1 新功能发布:A…

使用GAN进行异常检测

自从基于Stable Diffusion的生成模型大火以后,基于GAN的研究越来越少了,但是这并不能说明他就没有用了。异常检测是多个研究领域面临的重要问题,包括金融、医疗保健和网络安全。检测和正确分类未见的异常是一个具有挑战性的问题,多…

Electron 跨平台打包

最近利用 Electron 制作跨平台安装包,记录步骤,踩坑多多。 首先,一步步搭建项目 一、搭建环境 初始化 package.json,这里要求 node 版本不低于14.16,我用的 v14.16.0,16版本在 Linux 下容易出现安装依赖…